首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
气体水合物是能源和温室气体潜在的巨大来源。最新调查表明,气体水合物在大陆坡普遍存在,而且水合物中甲烷的能源当量很可能超过所有已知原油和天然气储量的总和。海洋气体水合物通常由圈闭在水冰晶格中的甲烷组成,一般发现于海底以下(bsf)200~500 m之间海洋沉积物的特定深度范围内。在地震剖面上,气体水合物稳定带的底部由一强反射层――似海底反射层(BSR)指示。在BSR之下常见游离甲烷气体,但其浓度显著低于气体水合物中的甲烷。气体水合物的成因与形成已成为越来越多的研究中的焦点。尽管通常假定气体水合物与海洋沉积物中有…  相似文献   

2.
在高压和低温的稳定条件下 ,某些气体可以与水结合在一起形成固体———天然气水合物。在许多有甲烷供给的海洋沉积物中存在形成水合物的条件。大陆边缘的地震反射剖面表明在海底上部几百米的沉积物中通常存在天然气水合物 ,其下伏更深的地带则含游离气。若大量甲烷储集在这些储集层中 ,溢出的天然气可能在气候变化期间扮演重要角色。事实上海洋沉积物中的天然气水合物储层可能是地球上最大的化石燃料储集层。在此 ,我们报告了作为气水合物和游离气储集在大西洋西部布莱克海脊沉积层系内的原地甲烷丰度的直接测量。我们的结果表明作为固体气…  相似文献   

3.
神狐海域天然气水合物的特征及其气源   总被引:1,自引:0,他引:1  
我国天然气水合物首钻的钻探结果显示,南海北部陆坡神狐海域的天然气水合物呈分散浸染状分布在以粗粉砂、中粉砂、细粉砂和极细粉砂为主要组分的松散沉积物中。沉积物顶空气组成分析显示,神狐钻探区沉积物中的游离气体主要是烃类气体,另外也有微量的CO2,其中,甲烷含量界于62.11%~99.91%之间,平均含量达到了98.04%。而天然气水合物的气体同位素组成显示,神狐海域形成天然气水合物的烃类气体主要是微生物通过CO2还原的形式生成。在此基础上,进一步分析了神狐海域研究区上中新统上部和上新统微生物成因甲烷的生产力,认为神狐海域具备良好的适合微生物成因甲烷大量生成的地质条件。  相似文献   

4.
海洋孔隙水的硫酸盐剖面在底层气体水合物甲烷通量中的指示WalterS.Borowski等微生物硫酸盐的减少,微生物沼气的产量,和气体水合物的形成与深海、大陆边缘沉积物中出现的成岩作用紧密联系(Paull等,1994).气体水合物是由水和低分子量气体(...  相似文献   

5.
从目前已发现的水合物实物样品来看,水合物储集层主要受岩性和裂隙的控制。在甲烷通量较小的情况下,天然气水合物主要储集在岩性相对粗的砂质沉积物中,而在甲烷通量较大的情况下,岩性对天然气水合物储集层的控制作用减弱,疏松未固结的泥质沉积物同样也可成为块状水合物的良好储集层。裂隙作为气体运移通道在天然气水合物储集层中起着重要作用,垂向或近于垂向分布于沉积物中,是在甲烷通量较大的泥质沉积物中由气体超压或构造运动造成的,因此,岩性和裂隙对水合物储集层的控制作用是可以相互转化的。  相似文献   

6.
天然气水合物目前已经成为世界范围的一个研究热点,而我国的天然气水合物研究起步则相对较晚,通过阅读国内外有关文献,总结了天然气水合物在海底的分布特征,聚集和形成机制,产状及其形成机理,甲烷羽的形成过程,天然气水合物在沉积物中的聚集位置通常有两种情况:一是较浅的沉积物(海底以下几米)中,受控于泥底辟,泥火山,断层等;二是较深的沉积物(海底以下几十米,甚至更深)中,受控于流体,当断层延伸至海底时,通常在水合物聚集处的上部发现甲烷羽,天然气以溶解气,游离气或分子扩散的形式运移,在温,压适宜的沉积物中,即水合物稳定带内聚集并形成水合物,水合物的形成过程是:最初形成晶体,呈分散状分布于沉积物中,之后逐渐聚集,生长成结核状,层状,最后形成块状,在细粒的浅层沉积物中,通常以较慢的速度生长,形成分散状的水合物;而在粗粒沉积物中,水合物通常呈填隙状,并且这种产状可能位于较深层位中,我国南海在温度,压力,构造条件,天然气来源等方面都能满足天然气水合物的形成条件,并且在南海也发现了一些水合物存在的标志,如似海底反射层(BSR)以及孔隙水中氯离子浓度的降低。因此,天然气水合物在我国南海海域可能有很好的前景。  相似文献   

7.
气水合物是甲烷或其他低分子气体与水分子的化合物,它在低温和相对高压的条件下仍然是稳定的。水深超过300 m的海洋符合这样的条件。气水合物以冰的集合体形态广泛分布于富含有机质的海洋沉积物中,后者分解后形成了甲烷。近年来对这些化合物的兴趣有两个主要原因:首先,现已查明  相似文献   

8.
气体水合物的聚积很大程度上取决于孔隙水中气体溶解度的空间变化。在海底气体水合物稳定带内,在向海底表面方向上,随着温度的下降,水中甲烷的溶解度明显降低。气体水合物可以从向上渗出的甲烷饱和水中沉淀,也可以从与上升流和生物化学甲烷刘生产速率区域有关的扩散晕内的散播气体和分凝孔隙水中聚积。水合物更易在孔隙水相对淡的及孔隙较大的沉淀物中形成。温不合物稳定带是碳氢化合物气体从沉积物迁移进入海水的地球化学障。无  相似文献   

9.
气体水合物是甲烷和水混合的冰状笼形物,存在于大陆架和陆坡沉积物中。气体水合物在地温梯度与水合物相边界(气体水合物稳定带底界,BGHS)相交的深度范围内是稳定的。当底层水温度上升造成地温梯度升高时,或当相对海平面降低使围限压力降低时,BGHS就会向上迁移,并形成因水合物分  相似文献   

10.
位于水合物脊(前称“第二脊”)上的ODPl46航次站位调查资料揭示了俄勒冈边缘水合物/气体系统中构造活动影响下的地层和BSR反射特征的变化情况。尤其在水合物脊南部,这些模式得到了详细的描述,1996年在该区的抓斗样品表明。在海底附近存在含块状水合物的沉积物。根据我们对ODPl46航次站位调查资料的检验和水合物脊最近几个航次的调查结果,建议在水合物脊上实施三个钻孔,井深400—700米。并辅以生物和地球化学综合采样及一系列的原位测试。在这样一个ODP航次中开展下列课题的研究:1.在两个明显不同的沉积和构造环境中,对气体和水合物形成的物理和化学机制作源区比较:(1)在增生楔较老沉积物中,海底附近发现了块状水合物及其相关的自生碳酸盐矿物,其甲烷可能来源于俯冲沉积物;(2)与增生楔相连、快速充填的陆坡盆地中,沉积物较年轻、成层性好,其地震反射特征强烈地显示了水合物和(或)游离气的存在,但海底附近没有水合物和(或)碳酸盐矿物积聚的迹象,其气源主要来自原地沉积物中。2.采用地球物理遥感技术校准确定水合物及其下伏游离气饱和度。为了更好地了解这些特性,需要编制井间水合物分布图,评价俯冲带环境中天然气水合物的未来经济潜力。3.利用地球化学示踪物、物理性质测量和微结构分析,检测构造因素诱发的水合物不稳定导致的BSR和BSR下伏地震反射特征发生变化是否与地震反射资料推测的一样。4.加深对水合物形成的地球化学效应的认识,以便于利用综合地质资料确定甲烷释放进入大气的原生载体,了解巨大而剧烈的水合物失稳作用在全球变化中所扮演的角色。5.确定水合物和下伏沉积物的孔隙度和剪切强度,以评估水合物、流体活动与斜坡稳定性之间的关系。6.确定沉积物中生物成因甲烷菌和热成因甲烷菌的分布数量,评估它们对水合物形成和分解的贡献,以及与沉积物成岩作用的关系。  相似文献   

11.
<正>天然气水合物是由天然气中小分子气体(甲烷、乙烷等)在一定的温度、压力条件下和水作用生成的一类笼型结构的冰状晶体。形成天然气水合物的主要气体成分为甲烷,甲烷气体体积超过99.9%的天然气水合物通常称为甲烷水合物,它是一种典型的Ⅰ型水合物,广泛分布于海底以下0~1500m深的沉积带或陆地上的永久冻土带中,是自然界中甲烷存在的一种重要方式。迄今在世界各地海洋及大陆冻土带中已探明的天然气水合物  相似文献   

12.
在几乎所有的海底都有适合于天然气水合物的温度和压力,但是热力学平衡提出了形成水合物需要另一个涉及到溶解气浓度的条件。通过一种模拟退火算法--这种算法使得甲烷气体与海水混合物的自由能最小-我们量化了水合物的热力学条件。平衡相用一个压力、温度和盐度的函数来描述各稳定相的成分。我们发现溶解气的浓度(溶解度)随着温度的增加而迅速下降。在海水中,气体溶解度在特定的盐度时也是降低的。由于低溶解度会减少形成水合物所需要的气体量,所以海水中的盐实际上促进了水合物的形成。盐度的变化(常常引起水合物形成情况的变化)增加了一个热力学自由度,这就形成了一个三相区,此区域中水合物、海水和自由气体在恒压下的一个温度范围内共存。我们把该计算用于确定海底稳定相的分布。气体溶解度的计算结果表明水合物可以直接由海底的溶解气结晶而成。气体沿着平衡浓度梯度的扩散表明气体被连续不断地由水合物层运送到所覆盖的海水中。为了在海底沉积的过程中保持水合物,需要有一个持续的甲烷气源以弥补扩散所引起的损失。通过简单的近海沉积的物理条件模型就可以估算水合物的生长和消耗。  相似文献   

13.
建立了沉积物中水合物含气量的测定方法;测定了人工松散沉积物中甲烷水合物、南海神狐海域及祁连山冻土区天然气水合物样品的含气量;计算了样品的表观水合指数(水与气体的摩尔比);探讨了水合物含气量的影响因素.测试结果表明,人工甲烷水合物样品表观水合指数与晶体水合指数相近,样品中水合物的浓度大,含气量较高;南海神狐海域及祁连山冻...  相似文献   

14.
天然气水合物是在水深大于300—500m的沉积中,在高压低温条件下,当甲烷和其它碳氢化合物气体富集时形成的冰状物质。目前,科学家估算世界上天然气水合物中甲烷的碳含量之差距是很大的(Kvenvolden和Lorenson,2001;Milkov等,2003)。海  相似文献   

15.
气体水合物是象冰一样的结晶物质,烃类和非烃类气体赋存于水分子晶格内。分布于墨西哥湾和其它海盆中的I型构造的气体水合物通常是细菌作用成因的甲烷水合物,贫13C、Ⅱ型和 H型气体水合物在墨西哥湾水深约540 m处共存。Ⅱ型气体水合物主要成分一般是C1-C4碳氢化合物(甲烷-异丁烷),而H型则主要由C1-C5碳氢化合物组成(甲烷-异戊烷)。与简单的细菌成因的甲烷水合物相比,由于热成因的气体水合物是由不同性质的碳氢化合物分子共存于晶体格子中,故保存了更为复杂的成因和稳定性信息。温度、压力及形成气体水合物的气体组成是决定…  相似文献   

16.
利用经过特殊组装的天然气水合物共振装置塔(GHRC),南安普顿大学开发出人工合成水合物的各种方法,并且测量了所产生的沉积物的各种性质,如剪切波(VS)、压缩波(VP)和它们各自的衰减值(QS^-1和QP^-1)。有两种方法值得考虑:第一种方法使用气体过剩技术,孔隙空间中已知水的体积可指示水合物的量:第二种方法在水饱和的孔隙空间的情况下用已知量的甲烷气体去制约水合物的体积。这两项技术的结果表明,在过剩气体条件下生成的水合物在低的饱和度情况下(3%)会导致沉积物结构的加强;然而,过剩水条件下即使足在水合物高饱和度情况下(40%),也只可观察到强度的缓慢增加。此外,在过剩气体实验中,衰减结果显示出阻尼在水合物的饱和度为5%左右时出现峰值,然而在过剩水实验中,阻尼随着孔隙空间中水合物含量的增加而持续增加。通过分析以上两种方法的结果,可以看出合成水合物的方法显然会影响含水合物砂的性质,并且也必定会影响孔隙空间中水合物的形态特征.  相似文献   

17.
天然气水合物地球化学特征   总被引:4,自引:0,他引:4  
天然气水合物是在低温、高压以及有足够气体供应条件下形成的一种天然气(主要为甲烷)与水组成的似冰状固态化合物。天然气水合物中包含的甲烷碳是全球甲烷资源的重要组成部分,是一种数量巨大的潜在能源[1]。而且由于甲烷的温室效应,天然气水合物分解释放的甲烷进入大气中会严重  相似文献   

18.
Kven.  KA 《海洋地质》1998,(2):28-45,27
天然气水合物赋存在极地的广义地区,通常与近岸和近海的冻土层以及大陆和岛屿外缘的沉积物相伴生。气体水合物中甲烷所含碳量可能超过10^19克。气体水合物在三个方面尤为重要,即:化石燃料储藏潜能,海底地质灾害以及对全球气候变化的影响,由于气体水合物代表地球表层2000m范围内的大量甲烷,故将其作为一种非常规的、未查验的化石燃料来源,因为气体水合物处于亚稳定状态,故温压变化影响其稳定性,海底之下未稳定的气  相似文献   

19.
Mclv.  RD 《海洋地质》2000,(4):61-65
自然界中赋存的气体水合物在海底沉积物是处于半固结状态,具有储存大量的气体和水的潜能。当水合物的平衡条件被打破时,能释放出气体和水。因此,水合物能给巨大的沉积物搬运提供潜在的形成机制。在海底低水温和正常静水压力条件下,大部分陆坡和所有海隆、深海平原在靠近海底沉积物的孔隙不处在饱和或近饱和状态下,烃类气体将形成水合物。水合物的气体既可能是原地微生物成因气,也可能是来自较深部沉积物的热解气。稳定水合物沉积物的平衡条件可能遭到破坏,例如由连续沉积或者海平面下降所引起,其中任何一种情况出现使部分固体气-水混合物开始分解。释放出气体和水的体积超过水合物自身的体积,如果大量水合物分解,那么其内部压力能猛烈地骤增,原来部分稳定的沉积物转化为富含气体和富含水的低密度泥岩。当内部压力由于气体压缩或者浮力作用变得非常大时,其上覆沉积物隆起甚至破裂,而非致密的气侵泥岸可以向上运移。与水合物有关非常大时,其上覆沉积物隆起甚至破裂,而非致密的气侵泥岸可以向上运移。与水合物有关的这些现象可以引起泥底辟、泥火山、泥滑坡或浊流,这取决于沉积物的结构和海底地形。  相似文献   

20.
墨西哥湾和 Blake洋脊气体水合物区储藏有近似相同体积水合化的碳氢气体化合物 (在标准温压条件下它们分别是 ( 1 0~ 1 3 .7)× 1 0 18m3和 3 0× 1 0 18m3。气体水合物在两地的储集成因是不同的。在墨西哥湾 ,气体水合物主要储藏在厚厚的、构造集中的稳定盖层内 ,这样大量的烃类气体就可以从海底深部的油气层中运移到气体水合物稳定带。在 Blake洋脊内 ,气体水合物是分散的 ,它们是在细菌成因甲烷生成处形成的 ,而在该处从底部运移上来的甲烷数量很少。诸如气体水合物易于赋存的浅海底地层和在裂隙中气体水合物的高赋集率等有利地质因素…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号