首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 175 毫秒
1.
This paper presents the results of comparison of impact pressures on own-plied structures induced by regular waves and irregular waves in a laboratory channel. Regular waves with wave heights ranging from 0.1 - 0.2 m and periods ranging from 1.0- 2.0 s are tested. The target spectrum for the irregular wave is JONSWAP spectrum. Irregular waves with siguifieant wave heights in the range of 0.10 - 0.25 m and peak periods in the range of 1 . 0 -2.0 s are tested. The relative clearance s/H1/3(H) is between - 0.1 and 0.4, s being the subtace level of structure model above the still water level. Time series of impact pressure are analyzed to indicate whether the properly of impact pressures induced by the regular wave significantly deviates from that by the irregular wave. The distribution of the impact pressure along the underside of the structure is compared for different types of incident waves. The effects of wave parameters, structure dimension and structure clearance on the impact pressure are also diseussed.  相似文献   

2.
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.  相似文献   

3.
Based on the perturbation method, a fourth order theory for nonlinear interactions among three dimensional gravity waves in water of any uniform depth is presented in this paper. Two cases are considered: ( i ) wave number vectors fixed, frequencies perturbed, and ( ii ) wave number vectors and frequencies both fixed. According to this solution, expressions of thesame order for progressive waves, short-crested waves and nonlinear interaction between wave and vertical wall are also derived'  相似文献   

4.
This paper presents a numerical study on the high-frequency wave loads and ringing response of offshore wind turbine foundations exposed to moderately steep transient water waves. Input wave groups are generated by the technique of frequency-focusing, and the numerical simulation of focused waves is based on the NewWave model and a Fourier time-stepping procedure. The proposed model is validated by comparison with the published laboratory data. In respect of both the wave elevations and the underlying water particle kinematics, the numerical results are in excellent agreement with the experimental data. Furthermore, the local evolution of power spectra and the transfer of energy into higher frequencies can be clearly identified. Then the generalized FNV theory and Rainey's model are applied respectively to calculate the nonlinear wave loads on a bottom-hinged vertical cylinder in focused waves.Resonant ringing response excited by the nonlinear high-frequency wave loads is found in the numerical simulation when frequency ratios(natural frequency of the structure to peak frequency of wave spectra) are equal to 3–5.Dynamic amplification factor of ringing response is also investigated for different dynamic properties(natural frequency and damping ratio) of the structure.  相似文献   

5.
The total inline wave forces, the irregular wave forces in particular, on an isolated pile are investigated by experiment. The relationships between force coefficients Cd and CM including in Morison's Eq. . and KC number or Reynolds number Re, and the variation of Cd and Cm in frequency domain are analysed with the method of least-squares in time domain and that of cross-spectral analysis. The plots of C4and Cmversus KCare given for both regular and irregular waves and those for irregular waves are used for numerical simulation of the irregular wave forces on the vertical pile and the results are in fairly good agreement with the test data. Based on the experimental results , the applicability of the spectral analysis method for calculating irregular wave forces on an isolated pile is investigated with the coherency γ between wave and wave forces and with KC number.  相似文献   

6.
According to the theoretical solutions for the nonlinear three-dimensional gravity surface waves and their interactions with vertical wall previously proposed by the lead author, in this paper an exact second-order random model of the unified wave motion process for nonlinear irregular waves and their interactions with vertical wall in uniform current is formulated, the corresponding theoretical nonlinear spectrum is derived, and the digital simulation model suitable to the use of the FFT (Fast Fourier Tansform) algorithm is also given. Simulations of wave surface, wave pressure, total wave pressure and its moment are performed. The probability properties and statistical characteristics of these realizations are tested, which include the verifications of normality for linear process and of non-normality for nonlinear process; the consistances of the theoretical spectra with simulated ones; the probability properties of apparent characterstics, such as amplitudes, periods, and extremes (maximum and minimum, positive and negative extremes). The statistical analysis and comparisons demonstrate that the proposed theoretical and computing models are realistic and effective, the estimated spectra are in good agreement with the theoretical ones, and the probability properties of the simulated waves are similar to those of the sea waves. At the same time, the simulating computation can be completed rapidly and easily.  相似文献   

7.
FAN Ju 《中国海洋工程》2000,14(1):103-112
—In this paper,the second-order perturbation method in frequency domain is used to calculateRAO and spectra of motion and mooring line tension of a turret-moored tanker in ballast condition.Thecalculated results are compared with corresponding experiment results.In the experiment the wave head-ing is 180°,and the wave spectra is the P-M spectrum and white noise spectrum.In the theoretical calcu-lations,the damping coefficient of slow oscillation of the tanker is determined on the basis of the dampingobtained from a test of irregular waves where the mooring system is replaced by a nonlinear spring withnonlinear stiffness similar to that of the mooring system.From the comparison between theoretical calcula-tions and experimental results,it can be found that the theoretical results obtained by the second-orderperturbation method in frequency domain are in good agreement with the experimental results,indicatingthat the damping coefficient of slow oscillation of the tanker required in frequency domain calcu  相似文献   

8.
Regular and irregular wave forces acting on vertical walls are studied by a previously developed numerical model. The computed wave forces are compared with the available experimental data to verify the numerical model, and satisfactory agreements are obtained. The variation of wave forces with incident angles and the shape of simultaneous pressure distribution are investigated, and the comparisons between numerical results and Goda' s predictions are also carried out. It is concluded that the maximum wave forces acting on the unit length of vertical wall is often induced by the obliquely incident waves instead of normally incident waves, while Goda' s formula may be inapplicable for oblique wave incidence. The shape of simultaneous pressure distribution is not significantly influenced by incident angles, and it can be favorably predicted by Goda' s formula. When regular wave heights are taken as the same as irregular wave height H1%, the irregular wave forces Ph. 1% are slightly larger than regular wave forces in most cases.  相似文献   

9.
The method developed by Wen et al. (1988 a) for deriving theoretical wind wave frequency spectrum in deep water is extended to the case of water of finite depth, in which a parameter η=H/d is introduced, where H and d represent the average wave height and water depth respectively. The derived spectra reduce to those in deep water when η=0. The case of η=1/2 corresponds to waves impending to break because of the effect of the bottom. Simplified forms of spectra are given. The theoretical results agree with the observed spectra well.  相似文献   

10.
High-order models with a dissipative term for nonlinear and dispersive wave in water of va-rying depth with an arbitrary sloping bottom are presented in this article.First,the formal derivations toany high order of μ(=h/λ,depth to deep-water wave length ratio)and ε(=α/h,wave amplitude todepth ratio)for velocity potential,particle velocity vector,pressure and the Boussinesq-type equations forsurface elevation η and horizontal velocity vector U at any given level in water are given.Then,the exactexplicit expressions to the fourth order of μ are derived.Finally,the linear solutions of η,U,C(phase ce-lerity)and C_g(group velocity)for a constant water depth are obtained.Compared with the Airy theory,excellent results can be found even for a water depth as large as the wave legnth.The present high-ordermodels are applicable to nonlinear regular and irregular waves in water of any varying depth(from shal-low to deep)and bottom slope(from mild to steep).  相似文献   

11.
This paper considers the nonlinear transformation of irregular waves propagating over a mild slope (1?40). Two cases of irregular waves, which are mechanically generated based on JONSWAP spectra, are used for this purpose. The results indicate that the wave heights obey the Rayleigh distribution at the offshore location; however, in the shoaling region, the heights of the largest waves are underestimated by the theoretical distributions. In the surf zone, the wave heights can be approximated by the composite Weibull distribution. In addition, the nonlinear phase coupling within the irregular waves is investigated by the wavelet-based bicoherence. The bicoherence spectra reflect that the number of frequency modes participating in the phase coupling increases with the decreasing water depth, as does the degree of phase coupling. After the incipient breaking, even though the degree of phase coupling decreases, a great number of higher harmonic wave modes are also involved in nonlinear interactions. Moreover, the summed bicoherence indicates that the frequency mode related to the strongest local nonlinear interactions shifts to higher harmonics with the decreasing water depth.  相似文献   

12.
The wavelet-based bicoherence, which is a new and powerful tool in the analysis of nonlinear phase coupling, is used to study the nonlinear wave–wave interactions of breaking and non-breaking gravity waves propagating over a sill. Two cases of mechanically generated random waves based on Jonswap spectra are used for this purpose. Values of relative depth, kph (kp is the wave number of the spectral peak and h is the water depth) for this study range between 0.38 and 1.22. The variations of wavelet-based total bicoherence for the test cases indicate that the degree of quadratic phase coupling increases in the shoaling region consistent with a wave profile that is pitched shoreward, relative to a vertical axis as seen in the experiments, but decreases in the de-shoaling region. For the non-breaking case, the degree of quadratic phase coupling continues to increase until waves reach the top of the sill. Breaking waves, however, achieve their highest level of quadratic phase coupling immediately before incipient breaking and the degree of phase coupling decreases sharply following breaking. In addition the wavelet-based bicoherence spectra provide evidence of the harmonics' growth which is reflected in the energy spectra. The bicoherence spectra also show that quadratic phase coupling between modes within the peak frequency as well as between modes of the peak frequency and its higher harmonics are dominant in the shoaling region, even though there are relatively high levels of quadratic phase coupling occurring between other frequencies. Furthermore, using the temporal resolution property of the wavelet-based bicoherence, we find that the quadratic wave interactions occur more readily during segments of time with large change of wave amplitude, rather than those segments having large wave amplitudes, but small gradients in amplitude.  相似文献   

13.
响水近岸海域波浪特性研究   总被引:3,自引:0,他引:3  
基于响水波浪站累计一整年的现场观测资料,分析了波高和波周期的年内变化特性,研究了波浪的统计特性和波谱特性,并总结归纳了该海域各特征波要素之间以及各波谱参数之间的转换关系。结果显示:响水海域全年有效波高的变化幅度在0.10~2.80 m之间,年平均值为0.56 m;最大波高的变化幅度在0.15~5.58 m之间,年平均值为0.93 m;平均波周期的变化范围为1.91~9.02 s,年平均值为3.90 s。夏季大波高发生频率明显要小于冬、春季节,波浪季节性变化较为显著。就波高和波周期分布而言,通过拟合得出的Weibull分布较为适合本海域实测波高分布和波周期分布。波谱特性方面,本海域双峰谱占到总数的62.5%,且低频谱峰值普遍高于高频谱峰值,其中低频谱峰出现在0.04 Hz左右,高频谱峰则出现在0.15~0.20 Hz之间,分别为本海域涌浪和风浪所集中的频率区间。采用回归分析方法进一步分析了各特征波要素之间以及各波谱参数之间的关系,发现多数波参数之间存在显著的相关性,但受波浪浅水变形影响,各参数之间的比值与理论深水关系有所区别。本文的研究成果可为沿海建筑物的设计以及防灾减灾提供参考和依据。  相似文献   

14.
SWAN model predictions, initialized with directional wave buoy observations in 550-m water depth offshore of a steep, submarine canyon, are compared with wave observations in 5.0-, 2.5-, and 1.0-m water depths. Although the model assumptions include small bottom slopes, the alongshore variations of the nearshore wave field caused by refraction over the steep canyon are predicted well over the 50 days of observations. For example, in 2.5-m water depth, the observed and predicted wave heights vary by up to a factor of 4 over about 1000 m alongshore, and wave directions vary by up to about 10°, sometimes changing from south to north of shore normal. Root-mean-square errors of the predicted wave heights, mean directions, periods, and radiation stresses (less than 0.13 m, 5°, 1 s, and 0.05 m3/s2 respectively) are similar near and far from the canyon. Squared correlations between the observed and predicted wave heights usually are greater than 0.8 in all water depths. However, the correlations for mean directions and radiation stresses decrease with decreasing water depth as waves refract and become normally incident. Although mean wave properties observed in shallow water are predicted accurately, nonlinear energy transfers from near-resonant triads are not modeled well, and the observed and predicted wave energy spectra can differ significantly at frequencies greater than the spectral peak, especially for narrow-band swell.  相似文献   

15.
A new technique in the analysis of wind–wave interaction, wavelet bicoherence, will be applied in this article. Wavelet bicohence has the ability to detect phase coupling and nonlinear interactions of the quadratic order with time resolution. It is used in this study to analyze wind–wave interaction during wave growth in a Mistral event. A selected record of simultaneously measured wind and wave data during Mistral is divided into five segments and the computations of the wavelet bicoherence are conducted for the whole record and for all divided segments. The results show that the phase coupling occurs between wind speed and wave height over a certain range of frequencies and that the range is different from one segment to another due to the non-stationary feature of the time series.  相似文献   

16.
In this paper.the characteristics of laboratory wind waves under various wind speeds and wat-er depths are studied.It is found that either the real or the imaginary part of the bispectrum can be relatedto the asymmetry of the wave profile,and the bicoherence is related to the ratio of nonlinear to linear wavecomponent.Occasionally,these two categories of nonlinear index lead to opposite inferences,because eachof them has its own significance and functions.The applicability of linear wave spectral model in oceanwaves becomes questionable only when strong nonlinearity is indicated by both of these two indexes.Thelinear spectral representation of wave fields does not necessarily become inadequate as water depth de-creases,and its appropriateness can be examined through the characteristics of the bispectrum.  相似文献   

17.
海洋波浪能平均功率的准确计算是波浪能开发和利用的基础。实践中,波浪能转换装置一般安装在有限水深区域。对于随机波,只有当详尽的波浪谱已知的时候,有限水深区的波能功率才能被准确计算出来。由于种种原因,实践中波浪的实测数据大多以散点图或有义波高和统计波周期的形式给出,而波浪谱信息有时则很难获得。基于这种情况,传统上人们利用无限水深条件下的相关公式来估算有限水深区域的波能功率,但这种做法会造成较大的误差。本研究显示,对于50 m水深的理论波谱JONSWAP谱来说该误差高达14.6%。为了提高波能功率计算的准确性,本文提出了一种基于能量频率的一阶和二阶近似算法,可以在未知波浪谱的情况下较为准确地计算不同水深时的波能功率。针对两种理论波浪谱的计算结果表明,本方法在计算有限带宽内的波能功率时计算误差低于2.8%。  相似文献   

18.
The main objective of this paper is to examine the influences of both the principal wave direction and the directional spreading parameter of the wave energy on the wave height evolution of multidirectional irregular waves over an impermeable sloping bottom and to propose an improved wave height distribution model based on an existing classical formula. The numerical model FUNWAVE 2.0, based on a fully nonlinear Boussinesq equation, is employed to simulate the propagation of multidirectional irregular waves over the sloping bottom. Comparisons of wave heights derived from wave trains with various principal wave directions and different directional spreading parameters are conducted. Results show that both the principal wave direction and the wave directional spread have significant influences on the wave height evolution on a varying coastal topography. The shoaling effect for the wave height is obviously weakened with the increase of the principal wave direction and with the decrease of the directional spreading parameter. With the simulated data, the classical Klopman wave height distribution model is improved by considering the influences of both factors. It is found that the improved model performs better in describing the wave height distribution for the multidirectional irregular waves in shallow water.  相似文献   

19.
为了探究激波捕捉类Boussinesq模型在模拟岛礁地形上规则波和不规则波传播的可行性,采用基于完全非线性Boussinesq方程并具有激波捕捉能力的数值模型Funwave-TVD对规则波和不规则波在岛礁地形上的传播进行了数值模拟,通过与试验数据对比,分析模型中空间步长的影响,验证模型在模拟波高、平均水位分布以及波谱空间演变的能力,结果表明:采用合适的空间步长,模型能较好地模拟规则波和不规则波在岛礁地形上的传播和演化过程。对于规则波,较小的空间步长可改善破碎点处波高峰值的预测,并能更好地预测波浪破碎后波高的空间分布,相比结合经验破碎的Boussinesq模型,Funwave-TVD能更好地模拟规则波在岛礁地形上的破碎,以及破碎以后行进涌波的再生成过程;对于不规则波,Funwave-TVD总体而言能较好地模拟涌浪有效波高、次重力波的生成及空间演化和平均水位,但会低估礁坪上次重力波波高,较粗的空间步长也会低估礁坪上涌浪有效波高。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号