首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The main objectives of this study were to compare three wind-stress algorithms of varying intricacy and estimate the extent to which each method altered computed wind-stress curl. The algorithms included (1) a simple bulk formula for neutral conditions that is dependent only on wind velocity components; (2) a formula that in addition to dependence on wind components includes a simplified effect of thermal stability through differences in air and sea temperatures; and (3) an algorithm that includes full treatment of dynamics and atmospheric stability. Data for the analysis were from a field program that used a special buoy network off Bodega Bay during 28 June–4 August 2001.A diamond-shaped setup of five closely separated buoys in Bodega Bay allowed for one of the first attempts to compute wind-stress curl over the ocean using buoy measurements. Based on an analysis of the available dataset, the marine layer over Bodega Bay is characterized by positive wind-stress curl with a median value around 0.2 Pa (100 km)−1 and maximum values reaching 2.5 Pa (100 km)−1. Positive wind-stress curl was observed for all wind speed conditions, whereas negative wind-stress curl episodes were associated mostly with low-wind conditions.Comparison of wind-stress curl computed using the three algorithms showed that differences among them can be significant. The first and third algorithms indicated similar stress curl (difference around 10%), but the differences between these two and the second algorithm were much higher (approximately 40%). The reason for the difference is the stability correction, which in the third algorithm strongly decreases with an increase in wind speeds, but stays at a similar level for all wind speeds in the second algorithm. Consequently, for higher wind speeds the variability of wind stress calculated using the second algorithm is greater than for the other two algorithms, causing significant differences in computed wind-stress curl (root mean-square error equal to 0.19 Pa (100 km)−1).Despite the apparent biases in computed wind stress and wind-stress curl among the algorithms, all of them show a significant trend of decreasing sea-surface temperature (SST) with increasing wind-stress curl. The bootstrapping analysis has revealed that both the along-shore wind stress and wind-stress curl have noticeable correlation with the changes in the sea-surface temperature as an indirect indication of the upwelling. An additional analysis, based on the low-pass filtered data, showed also significant agreement between the measured divergence in the cross-shore surface transport and the wind-stress curl computed for all three algorithms.  相似文献   

2.
Scaling of the equations of motion of the Antarctic Circumpolar Current indicates that the Rossby number and the Ekman number are 10−4 to 10−5 but the vertical Ekman number may reach unity in the bottom boundary layer. The equations of motion are integrated vertically from the surface to the bottom and averaged over a latitude circle. The resulting equation in the meridional direction is predominantly geostrophic, whereas the main terms of the equation in the zonal direction are the wind stress and the bottom stress. When the vertical eddy viscosity near the bottom is of the order of 102cm2/sec, the total zonal transport through the Drake Passage computed from the balance of the wind stress and the bottom stress equals 260×106m3/sec, the amount determined byReid andNowlin (1970) from observations. The northward transport reduces the eastward transport corresponding to the wind stress of the westerlies in the A. C. C. through the Coriolis' term in the vertically integrated equation of motion of the zonal direction. South of the Drake Passage, such reduction reaches about ten percent of the wind-driven transport mainly due to the peripheral water discharge. North of the Drake Passage, the northward transport may be generated by the effect of the South American coast which prevents free eastward movement of the A. C. C., causing a wake to the east. This transport may contribute to a part of the northward transport of the bottom water postulated byMunk (1966). The effect of the horizontal eddy viscosity in the zonal transport equation is negligible except near the Antarctic coast, if the eddy viscosity is less than 109cm2/sec.  相似文献   

3.
An array of five buoys and three coastal stations is used to characterize the winds, stress, and curl of the wind stress over the shelf off Bodega Bay, California. The wind and wind stress are strong and persistent in the summer and weak in the winter. In the summer, wind and stress decrease strongly across the shelf, toward the coast. Combinations of buoys are used to compute the curl of the wind stress over different portions of the shelf. The mean summer 2001 curl of the wind stress over the array depends upon the area selected, varying between −1.32×10−6 and +7.80×10−6 Pa m−1. The winter 2002 wind-stress curl also depends on location, varying from −2.06×10−6 to +2.78×10−6 Pa m−1. Mean monthly curl of the wind stress is a maximum in the summer and a minimum near zero in the winter. In both the summer and the winter, the correlation between the wind-stress curl for different portions of the shelf varies between moderate negative, though insignificance, to high positive. A wind measurement at a single point can be poorly related to the measured curl of the wind stress at other locations over the shelf. The measurements show that the use of one wind measurement to characterize the curl of the wind stress over the shelf without further investigation of the local wind-stress curl structure is risky.  相似文献   

4.
Measurements of local values of the skin friction have been made at many points along the surface of representative wind wave crests in a wind wave tunnel, by use of the distortion of hydrogen-bubble lines. The results obtained at 2.85-m fetch under 6.2 m s–1 mean wind speed show that the intensity of the skin friction varies greatly along the surface of wind waves as a function of the phase angle. It increases rather continuously at the windward surface toward the crest, attains a value of about 12 dyn cm–2 near the crest, decreases suddenly just past the crest, and the value at the lee surface is substantially zero Values of the skin friction thus determined along the representative wind waves give an average value of 3.6 dyn cm–2, rather exceeding the overall stress value of 3.0 dyn cm–2, which has been estimated from the wind profile. The results are interpreted as that the skin friction bears most of the shearing stress of wind, and that it exerts most intensively around the representative wave crests at their windward faces.  相似文献   

5.
Heat and salt balances in the Seto Inland Sea   总被引:1,自引:0,他引:1  
Seasonal variations of heat and salt balances are estimated in the Seto Inland Sea with the use of a numerical experiment.The surface effect is dominant with respect to the heat balance. In spring, however, the effect of the horizontal heat transport is the same as or greater than that of the surface heating (or cooling). Annual mean heat transport is 85 cal cm–2 day–1 (356 J cm–2 day–1) which is supplied from the open ocean and lost through the sea surface in the Inland Sea as a whole. Because of the shallow water depth, heat is supplied through the surface and carried out by the horizontal heat transport in Hiuchi- and Bingo-nada in the annual mean. The heat transport has the opposite sense to that in the whole Seto Inland Sea and annual mean transport is negative (–10 cal cm–2 day–1,i.e., –42 J cm–2 day–1).The salt balance is primarily controlled by the river discharge and the surface effect (precipitation) in June and July. In the other months, the effects of horizontal salt transport, of river inflow and of sea surface exchange (especially of the evaporation in autumn) are comparable to each other. In the Bungo Channel the river effect is relatively small. Osaka Bay and the Kii Channel are characterized by a smaller surface effect.Contribution No. 446 from Tohoku Regional Fisheries Research Laboratory.  相似文献   

6.
Phytoplankton chlorophyll stocks in the Antarctic Ocean   总被引:5,自引:0,他引:5  
Phytoplankton chlorophyll stocks in the Indian sector of the Antarctic Ocean were estimated on the basis of published data collected from nine cruises of the Icebreaker,Fuji in 1965–1976, during routine observations of the Japanese Antarctic Research Expedition (JARE). Surface chlorophylla concentration, measured at 631 stations in waters south of 35°S, ranged from 0.01 to 3.01 mg m–3, At about half of the stations the values were less than 0.24 mg and at only 29 stations were high values more than 1.00 mg m–3 recorded. The levels of surface chlorophylla stocks were estimated in three groups; (1) data obtained on the southward leg through the eastern Indian sector (middle-late December), (2) those on the northward leg through the western Indian sector (late February–early March) and (3) those on the northward leg through the eastern Atlantic sector (late February–early March). Furthermore, mean values and standard deviations were calculated for each of six different water masses from north to south,i. e., subtropical water between 35°S and the Subtropical Convergence (STC) zone, water within the STC zone, Subantarctic Upper Water, water within the Antarctic Convergence (AC) zone, Antarctic Surface Water between the AC zone and 63°S, and Antarctic Surface Water south of 63°S. Mean values of surface chlorophylla concentrations for each of the six water masses on the three legs ranged from 0.15 to 0.58 mg m–3 and were comparable to those reported by other workers previously. Seasonal periodicity of phytoplankton chlorophyll stock is discussed. The surface chlorophyll stock in the oceanic water of the Antarctic Ocean does not seem to be so high as previously believed.  相似文献   

7.
Wind-induced Kuroshio intrusion into the South China Sea   总被引:14,自引:0,他引:14  
The Kuroshio flows north along the east coasts of the Philippines and Taiwan. Between these two land masses lies the Luzon Strait which connects the Pacific Ocean to the South China Sea. The Kuroshio usually flows north past this strait, but at times part or all of it flows west through the strait into the South China Sea forming a loop current. It has been suggested that the loop current forms when the northeast monsoon deflects the Kuroshio through the Luzon Strait. In this study, satellite-derived sea-surface temperature images are used to observe the Kuroshio in the Luzon Strait region. Together with wind data from the region, these observations indicate a loop-current development process which is largely determined by an integrated supercritical wind stress parameter. The loop current grows when a four-day average of the local wind-stress component directed to the south exceeds 0.08 Nm–2. When this average wind-stress component drops below the critical value, the Kuroshio returns to its northward path.  相似文献   

8.
This paper presents the results of observation on the development of wind-waves which were generated in a lake water about 420 cm deep with a fetch 12 km long. Measurements of surface elevation were carried out at the end of an observational pier where the water depth was 80 cm. The wave momentum flux, i.e., the growth rate of the wave momentum, was estimated from both significant waves and power spectral densities for the wave records. The values obtained by the two ways accorded fairly well and they were 57 % as large as the wind stress measured simultaneously. The exponential growth rate of spectral densities for a frequency component was in good accord with that observed bySnyder andCox (1966) and by others. If these growth rates are applied to all the components of the spectrum, the wave momentum flux must exceed the wind stress. This cannot explain the experimental results nor can be physically accepted. The difference of spectral densities between the two successive runs showed that the increase of spectral densities was. limited in several bands of frequency. The phenomena are discussed in relation with the overshoot-undershoot effects studied byBarnett andSutherland (1968).Observational results suggest that the spectral growth of a certain component is closely related to the spectral densities of other components. Energy exchange among componented waves has not been considered in the theories for generation and development of wind-waves established by Phillips, Miles and others.New generation mechanism suggested byLonguet-Higgins (1969) was found to be able to describe the observed growth rates of the form(f)={(1/2)(t–t1/2)}2: the spectral density(f) was proportional to the square of durationt. However, the mechanism can not explain the overshoot-undershoot effects peculiar to the equilibrium spectrum of windwaves.Three frequencies characterizing the discrete distributions of frequency bands where spectral densities increased were examined and three waves corresponding to these frequencies were found to be satisfying the resonance conditions for the wave-wave interactions among three sinusoidal wave trains as studied byPhillips (1960),Longuet-Higgins (1962) andBenny (1962). The interactions are suggested to predict well both the spectral growth proportional to squares of duration and the ceaseless oscillations of spectral densities in an equilibrium spectrum.  相似文献   

9.
Current meter data from various depths near the sea bottom collected for 31 days at time intervals of 10 minutes using a subsurface buoy system at a depth at 38 m on the continental shelf off Akita, Japan have been analyzed. The results show the existence of a stationary Ekman layer. The typical range of the characteristic parameters are estimated as follows; friction velocity: 0.38 cm s–1; Ekman layer thickness: 16 m; logarithmic layer thickness: 4 m–6 m; constant flux layer thickness: 0.4–0.6 m; Ekman veering: 28.7°; drag coefficient: 0.24×10–2–0.53×10–2. Veering was also observed in the logarithmic layer.  相似文献   

10.
The three-seconds power law for wind waves of simple spectra, already derived byToba (1972 and 1973), may also be derived by introducing surface-wave properties into the form of the rate of energy dissipation in the theory of turbulence. The universal constantB, which was formerly determined empirically as 0.062 is here obtained asB=(2)–3/2=0.0635. Thus wind waves have the duality of turbulence and wave.  相似文献   

11.
To analyse material transport in inland seas, a horizontal two-dimensional dispersion equation is derived, and the dispersion coefficient due to the combined effect of vertical turbulent mixing and vertical shear of both a steady current and a tidal current is studied. In the present study, the assumption that velocity is uniform in horizontal planes is not necessary, and velocity has a free vertical profile; thus the dispersion coefficient formulated is general, and is represented by a tensor of the second order. The properties of the dispersion coefficient in the horizontal two-dimensional dispersion model are also investigated, and it is shown that the time-averaged dispersion coefficient due to the tidal current over a tidal period is approximately half that due to the steady current, if the velocity amplitude and the vertical profile of the tidal current are the same as those of the steady current (a similar result was presented byBowden (1965) for horizontal one-dimensional models). Finally, the dispersion coefficient in Hiuchi-Nada (Hiuchi Sound) in the central part of the Seto Inland Sea is evaluated by using the model. The values of the dispersion coefficient in that region range from 103 cm2 s–1 to 105 cm2 s–1 when vertical turbulent diffusivity is taken to be 50 cm2 s–1.  相似文献   

12.
Copper concentrations have been measured in more than 200 samples collected from an Alaskan fjord and continental shelf and slope regions in the northwestern Gulf of Alaska. Concentrations were lowest (2·1 nmol kg−1) at depths of 400–1000 m in the continental slope waters of the Gulf of Alaska. Copper increased systematically with decreasing salinities shoreward to concentrations >30 nmol kg−1 in fjord surface waters during summer months of high freshwater runoff. Copper concentrations increased with depth at an inner fjord station where deep basin waters have restricted circulation, and these data together with surface (<5 cm) pore water copper concentrations (mean=122 nmol kg−1) about an order of magnitude higher than bottom water copper concentrations are indicative of a flux of copper across the sediment-seawater interface. This latter was estimated at 32±12 nmol cm−2 annually, and represented less than 20% of the annual input to fjord surface water (228–411 nmol cm−2) added during summer months. Mass balances in bottom waters indicate a vigorous recycling of copper with a residence time estimated at 21±11 days. Most copper that is remobilized in surface sediments is returned to bottom waters and little (3%) is removed by subsequent diagenetic reaction in the buried sediments. However, an estimate of copper accumulating in anoxic fjord sediments was comparable with copper added to fjord surface waters suggesting that input-removal reactions rather than internal cycling controls copper geochemistry in this estuary.  相似文献   

13.
Undisturbed sediment cores were collected by a modified gravity corer from Funka Bay. The sedimentation rate is determined by both210Pb and pumice chronological methods. The sedimentation rates by210Pb method are concordant with those by pumice methods. The derived rate varies from 0.06 to 0.22 g cm–2 y–1, and an average is 0.09 g cm–2 y–1.  相似文献   

14.
The mechanism of the development of wind-waves will be proposed on the basis of the observed wave spectra in the wind tunnels and at Lake Biwa (Imasato, 1976). It consists of two aspects: One is that the air flow over the wind-waves transfers momentum concentratively to the steepest component waves and the other is that the upper limit of the growth of a wave spectral density is given by the ultimate value in the slope spectral density. The first aspect means that the wave field has the momentum transfer filter on receiving the momentum from the air flow. Wind-waves in the stage of sea-waves receive the necessary amount of momentum by the form drag,e.g. according to the Miles' (1960) inviscid mechanism, through a very narrow frequency region around a dominant spectral peak. On the other hand, wind-waves in the stage of initial-wavelets receive it according to the Miles' (1962a) viscous model through a fairly broad frequency region around the peak. The upper limit ofS max developing according to viscous mechanism is given byS max =6.40×10–4 k max –2cm2s andS max =2.03C(f max )–2cm2s(S max is the power density of the wave spectral peak with the frequencyf max ,k max is the wave number corresponding to the frequencyf max andC is the phase velocity).From the second aspect, the upper limit of the growth of wave spectral density is given by 33.3f –4cm2s in the frequency region of late stage of sea-waves. Therefore, the spectral peak, which has the largest value in the slope spectral density in the component waves of the wave spectrum, rises high over the line 4.15f –5cm2s. The energy is transported from the spectral peak to the high frequency part and to the forward face of a wave spectrum by nonlinear wave-wave interaction. This nonlinearity is confirmed by the bispectra calculated from the observed wind-wave data. In the stage of sea-waves, nonlinear rearrangement of the wave energy comes from a narrow momentum transfer filter, and, in the stage of initial-wavelets, it comes mainly from small corrugations and small steepness of the wave field.  相似文献   

15.
The wave-induced fluctuations of wind velocity over wind-waves measured in the wind tunnel experiment (Ichikawa andImasato, 1976) are compared with the numerical results estimated by a linear model (Model II) on the turbulent wind field over a dominant component of wind-waves. In the Model II, the undulation of mean air flow is introduced by adopting the curvilinear co-ordinates, and the existence of viscous sublayer and the influence of underlying wind-waves to background atmospheric turbulence are taken into account. The numerical results estimated by the Model II are in good agreement with the experimental results. The good agreement, which was not obtained from the previous model (Model I) in the Cartesian co-ordinates, is shown to be attributed to the undulating mean flow introduced in the Model II.  相似文献   

16.
In situ observation of downward solar radiation in the Western Pacific were carried out with voluntary merchant ships for five years from autumn 1990 through autumn 1995. Daily means of the short wave radiation were computed from the observed solar radiation. Then, the effects of shadows of the ship's superstructures on the observed radiation were corrected if needed. A 5-year average of short wave radiation along the main sea-lanes in the Western Pacific was calculated based on the observed daily mean solar radiation. Maximum values of 270–280 Wm–2 are found around 15°–20°N in May and June, while those of 290 Wm–2 are observed south of 18°S in November and December along the lanes. Small annual variations are found in the equatorial region. Annual mean values at the equator are about 230 Wm–2 between New Guinea and Indonesia, and 200 Wm–2 east of New Guinea. The 5-year average of short wave radiation was compared with the climatologies given in previous studies. We have concluded that some of results of previous studies are significantly underestimated.  相似文献   

17.
The long-term mean (31-year mean) surface heat fluxes over the Japan Sea are estimated by the bulk method using the most of the available vessel data with the resolution of 1o×1o. The long-term annual mean net heat flux is about –53 W m–2 (negative sign means upward heat flux) with the annual range from 133 W m–2 in May to –296 W m–2 in December. The small gain of heat in the area near Vladivostok seems to indicate the existence of cold water flowing from the north. In that area in winter, the mean loss of heat attains about 200 W m–2, and the Bowen's ratio is over the unity. The largest insolation occurs in May in the Japan Sea, and the upward latent heat flux becomes the largest in November in this area. The heat flux of Haney type is also calculated, and the result, shows that the constantQ 1 has the remarkable seasonal and spatial variation, while the coefficientQ 2 has relatively small variation throughout all seasons. Under the assumption of constant volume transport of 1.35×106 m3s–1 through the Tsugaru Strait, the long-term averages of the volume transport through the Tsushima and Soya Straits are estimated to be about 2.20 and 0.85×106 m3s–1 from the result of the mean surface heat flux, respectively.  相似文献   

18.
Concentrations of total carbonate, alkalinity and dissolved oxygen were obtained near the 1973 GEOSECS stations in the North Pacific subpolar region north of 40°N along 175°E between 1993 and 1994. A difference of excess CO2 content between the GEOSECS and our expeditions was estimated. The maximum difference in water column inventory of excess CO2 has increased by about 280 gC m–2 above 2000 m depth which apparently means an uptake of excess CO2 taken from air to sea during the last two decades. An averaged value of the annual flux of excess CO2 at 75–1000 m depth was 8.63±2.01 gC m–2yr–1 in the North Pacific subpolar region. By introducing the annual flux of excess CO2 into a two-box model for the North Pacific subpolar region, a penetration factor of excess CO2 from air to sea was obtained to be 1.08×10–2 gC m–3ppm–1 in the North Pacific subpolar region. Based on this factor, the surface concentration of excess CO2 in the North Pacific subpolar region was estimated to be 68 mole I–1, suggesting that the North Pacific subpolar region absorbed atmospheric excess CO2 more than the saturated concentration of excess CO2. Total amount of excess CO2 taken from the North Pacific subpolar region by 1993 was estimated to be 36.2×1015 gC, which was equal to about one tenth of that released by human activities after the preindustrial era.  相似文献   

19.
Non-dimensional equations of motion are derived for the A.C.C. of the barotropic mode, including the bottom friction and the horizontal eddy viscosity. Integration of the vorticity equation along a streamline leads to the zeroth order stream function which is dependent only on depth divided by Coriolis parameter. Integration of the momentum equation along a streamline yields the relation between the momentum input by wind stress and its dissipation by the bottom friction and by the horizontal eddy viscosity. This relation determines the magnitude of the stream function. It explains differences in the total transport of the A.C.C. obtained byBryan andCox (1972), though it gives only one third of the total transport obtained byKamenkovich (1972) with his vertical eddy viscosity of 102cm2 s?1. With 1 cm2 s?1 of this viscosity,Bryan andCox obtained the transport of about 650 or less than 32×106m3s?1 for constant or variable depth models, respectively. The higher transport is mainly due to broadening of the width of the A.C.C., whereas the lower value is due to its narrowing and meandering which in turn make the horizontal eddy viscosity more effective (by exercising friction on both sides of the A.C.C.) and the wind stress input smaller than the almost zonal streamlines for constant depth. In the Appendix dynamics of the bottom boundary layer is treated to give rational estimates of the bottom stress in terms of the geostrophic flow and is compared to the recent observations of the benthic boundary current in the Straits of Florida and off San Diego.  相似文献   

20.
The steady state wind-driven circulation in an immiscible three-layer ocean bounded only by a meridional east coast and a flat bottom is studied. Particular attention is paid to the occurrence of internal modes of motions in the Sverdrup transports (Sverdrup, 1947). The thicknesses of the upper two layers are of the same order and are allowed to vary up to the same order as the layer thicknesses themselves. Frictional transfer of momentum across the interfaces and the frictional boundary layer at the east coast are neglected. An eastward flow is obtained in the uppermost layer at lower middle latitudes. Though the particular feature in the wind-stress distribution as revealed byYoshida andKidokoro (1967a, 1967b) is not taken into account, the results show good agreement with the observed flow pattern of the Subtropical Countercurrent. Beneath the Subtropical Countercurrent a westward flow is predicted. These flows exhibit an internal mode of motions associated with a subsurface thermal front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号