首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study compares the composition, species richness and biomass of macrofaunal and algal assemblages on intertidal boulder shores as compared with those on adjacent rock-platforms, at six sites along the southwest coast of South Africa. Of 214 species identified, 175 were recorded on boulder shores and 124 on rock-platform shores; of these, 99 species were common to both habitat types, 92 were exclusive to boulders, and 23 were exclusive to rock-platforms. Significant differences in community structure (F(1,95) = 13.02, p < 0.01) (PERMANOVA test), species richness (F(1,95) = 14.28, p < 0.01), biomass (F(1,95) = 9.45, p < 0.01) and diversity (F(1,95) = 578.83, p < 0.01) (two-way ANOVA) were detected between the two habitat types. Average dissimilarity of community structure between rock-platform and boulder shores was 87.96% (SIMPER analysis). The increased species richness and biomass on boulder shores extended across all tidal levels, but was most marked in the highshore. These results confirm that boulder shores along the southwestern Cape support a distinct biota, richer and very different from that on adjacent rock-platforms, and rich in boulder-dependent species. We propose that boulder shores merit separate management and conservation targets as compared to rock-platforms, though the ecology of boulder shores in the region remains very poorly known and requires further study.  相似文献   

2.
The Ross Sea, a region of high seasonal production in the Southern Ocean, is characterized by blooms of the haptophyte Phaeocystis antarctica and of diatoms. The different morphology, structural composition and consumption of these two phytoplankton by grazing zooplankton may result in different carbon cycling dynamics and carbon flux from the euphotic zone. We sampled short-term (2 days) particle flux at 5 sites from 177.6°W to 165°E along a transect at 76.5°S with traps placed below the euphotic zone at 200 m during December 1995–January 1996. We estimated carbon flux of as many eucaryotic organisms and fecal pellets as possible using microscopy for counts and measurements and applying volume:carbon conversions from the literature. Eucaryotic organisms contributed about 20–40% of the total organic carbon flux in both the central Ross Sea polynya and in the western polynya, and groups of organisms differed in contribution to the carbon flux at the different sites. Algal carbon flux ranged from 4.5 to 21.1 mg C m−2 day−1 and consisted primarily of P. antarctica (cell plus mucus) and diatom carbon at all sites. Different diatom species dominated the diatom flux at different sites. Carbon fluxes of small pennate diatoms may have been enhanced by scavenging, by sinking senescent P. antarctica colonies. Heterotrophic carbon flux ranged from 9.2 to 37.6 mg C m−2 day−1 and was dominated by athecate heterotrophic dinoflagellate carbon in general and by carbon flux of a particular large athecate dinoflagellate at two sites. Fecal pellet carbon flux ranged from 4.6 to 54.5 mg C m−2 day−1 and was dominated by carbon from ovoid/angular pellets at most sites. Analysis of fecal pellet contents suggested that large protozoans identified by light microscopy contributed to ovoid/angular fecal pellet fluxes. Carbon flux as a percentage of daily primary production was lowest at sites where P. antarctica predominated in the water column and was highest at sites where fecal pellet flux was highest. This indicates the importance of grazers in carbon export.  相似文献   

3.
Seasonal changes in the shape and size composition of fecal pellets were investigated with sediment trap samples from 50 and 150 m in Kagoshima Bay to evaluate how the mesozooplankton community affects fecal pellet flux. Deep vertical mixing was evident in March, and thermal stratification was developed above 50 m in June, August and November. Chlorophyll a, suspended particulate organic carbon (POC) and copepod abundance were uniform throughout the water column during the seasonal mixing and concentrated above 50 m in the stratified seasons. Calanoids were the most predominant copepods in March and poecilostomatoids composed more than 45% of the copepod community in June, August and November. Fecal pellet fluxes at 50 and 150 m were the highest in March, nearly half of POC flux. The relative contribution declined considerably in the other months, especially for less than 4% of POC flux in August. The decline was corresponded to the predominance of cyclopoids and poecilostomatoids. Cylindrical pellets dominated the fecal matters at both depths throughout the study period, while larger cylindrical pellets nearly disappeared at 150 m in June, August and November. Copepod incubation revealed that cylindrical and oval pellets were egested by calanoids and the other copepods, respectively. We suggest that cylindrical fecal pellets produced by calanoid copepods contribute to feces flux but the predominance of poecilostomatoids and/or cyclopoids decreases feces flux via the increase of oval pellets and fragmentation of larger cylindrical pellets.  相似文献   

4.
The vertical flux of particulate matter from the surface of the Ross Sea, Antarctica, has been suggested as being large, with substantial seasonal and spatial variations. We conducted a study in which vertical flux was quantified using sediment traps deployed at 200 m and compared to estimates calculated from one-dimensional budgets of nutrients (nitrogen and silicon). Estimates of flux were collected at two locations in the southern Ross Sea from late December to early February during four years: 2001-2002, 2003-2004, 2004-2005, and 2005-2006. Phytoplankton biomass and vertical flux varied substantially seasonally and spatially between the two sites, and among years. The greatest flux was observed in 2001-2002, with a short-term maximum organic carbon flux of 3.13 mmol m−2 d−1, and the summer mean organic carbon flux equal to 0.93 mmol m−2 d−1. In contrast, the mean carbon flux at the same site in 2003-2004 was over an order of magnitude less, averaging 0.19 mmol m−2 d−1, despite the fact that productivity in that year was substantially greater. In 2005-206 the contribution of fecal pellets to flux was smallest among all years, and the pellet contribution ranged from <1 to more than 50% of organic flux. As the moorings also had surface layer fluorometers, the relationship between surface biomass and sediment trap flux was compared. Temporal lags between surface fluorescence and flux at 200 m maxima in 2003-2004 and 2004-2005 ranged from two to six days; however, in 2005-2006 the temporal offset between biomass and flux was much longer, ranging from 11 to 27 days, suggesting that fecal pellet production appeared to increase the coupling between flux and surface production. Estimates of export from the upper 200 m based on one-dimensional nutrient budgets were greater than those recorded by the sediment traps. Nutrient budgets also indicated that siliceous production averaged ca. 40% of the total annual production. The variations observed in the flux of biogenic matter to depth in the Ross Sea are large, appear to reflect different forcing among years, and at present are not adequately understood. However, such variability needs to be both understood and represented in biogeochemical models to accurately assess and predict the effects of climate change on biogeochemical cycles.  相似文献   

5.
R. Coma    M. Carola    T. Riera  M. Zabala 《Marine Ecology》1997,18(3):211-226
Abstract. The role of a cave-dwelling mysid population as a matter carrier was evaluated in a cave of the Medes Is. (NW Mediterranean) during 1988–89. Hemimysis spehmcola (Ledoyer , 1963) is a gregarious mysid whose swarms migrate daily from the inner end of the cave - where they remain during the day–to the exterior where they feed during the night. Fecal pellet composition, pellet egestion and pellet decomposition were measured in order to evaluate the transfer of matter by mysids. Based on the strong daily behavioural rhythms of these mysids. special importance was attached to the sampling frequency (every 2 h). In order to assess seasonal variability, four daily cycles were evaluated within a year. In situ incubations were carried out to determine changes on the egestion rates, morphology, weight and composition (AA. C: N ratios) of pellets in the course of a day. The number of pellets deposited inside the cave was estimated using containers distributed along the cave bottom by SCUBA divers. Fecal pellets showed an amorphous composition, whereby diatom frustules, dinoflagellate loricae and coccolithoporids were very scarce. About 25% of the body weight were estimated to be egested daily as fecal pellets, suggesting a detritivorous feeding habit. The population oscillated seasonally between 1 and 12 millions. Individuals egested between 1.6 and 3.5 pellets a day into the cave, each averaging from 9.4 to 11.9 μg DW, 0.5 to 1.0 μg C and 0.046 to 0.27 μg N. Therefore, the population carried daily about 20 407 g DW POM. 2–21 g C and 0.5 2.7 g N from outside to inside the cave. Pellets decomposed very quickly; between 20 to 50% of both C and N were released from pellets in less than 2 h after egestion. Oxidation of pellets theoretically consumes an amount of oxygen which agrees with the high BOD values previously reported for this cave. Marine caves are generally viewed as strictly oligotrophic systems; dense mysid populations, however, could strongly modify the trophic relationships in marine caves.  相似文献   

6.
The role of zooplankton in the vertical mass flux in the Kara and Laptev seas was studied during cruise 63 of the R/V Akademik Mstislav Keldysh in August–October 2015. Mass fluxes were estimated using sediment trap samples. The maximum values of the total vertical flux (19600 mg m?2 day?1) and particulate organic carbon (POC) flux (464 mg C m?2 day?1) were measured close to the Lena River Delta in the Laptev Sea. In the Kara Sea, the total flux (80–2700 mg m?2 day?1) and the POC flux (17–130 mg C m?2 day?1) were substantially higher than the estimates published earlier. The fecal pellet flux varied from 2 to 92 mg C m?2 day?1 and made up 4–190% of the total organic carbon flux. The mineral composition of fecal pellets largely mirrored that of suspended particulate matter. Clay minerals in the fecal pellets were more abundant than in particulate matter in the areas with noticeable freshwater impact. The flux of zooplankton carcasses varied from 0.1 to 66.4 mg C m?2 day?1 and made up 0.2–72% of total POC flux. The results are discussed in relation to the abundance and composition of zooplankton, the concentration and composition of suspended particulate matter, hydrophysical conditions, and methods of sample preparation for analysis.  相似文献   

7.
Abstract. The biomass of the endolithic algae Ostreobium quekettii Phyllosiphoniaceae living within skeletons of the scleractinans Mycedium elephantotus and Leptoseris fragilis averages 300 μg protein. cm-2. This represents approximately 7% of the protein of the zooxanthekie-containing tissue of M. elephantotus and approximately 38% of that of L. fragilis. Oxygen production Pmaxnet of 0. querkettii in bare skeletons of M. elephantotus averaged 0.7 μg O2.cm-2· h-1 measured in large skeletal fragments. This amount is approximately 6% of the productivity of the zooxanthellae Symbiodinium microadriaticum living in the same scleractinian species at the same depth Pmaxnet 11 μg O2· Cm-2· h-1. Light compensation of O. quekettii - within skeletons - was reached at approximately 10 and saturation at 35 40 μE·m-2· s-1. Algae within the M. elephantotus skeletons receive a maximum of 4–6% of the ambient irradiance, which is approximately 0.9 μE · m-2· s-1 approximately 0.04% surface irradiance at a depth of 88 m. In L. fragilis at a depth of 145 m, the photon flux decreases to 0.3 μE·m-2· s-1, which is less than 0.004% of surface intensity. With increasing depth, the ratio of Chl b to Chl a increased in endolithic algae colonizing L. fragilis, indicating improvement of light harvesting under low light conditions. In free-living O. quekettii cultured at irradiance levels from 0.5–60 μE·m-2· s-1, the concentrations of chlorophylls increased and that of siphonein and β-carotene decreased with decreasing photon flux.  相似文献   

8.
Downward fluxes of labile organic matter (lipids, proteins and carbohydrates) at 200 (trap A) and 1515 m depth (trap B), measured during a 12 months sediment trap experiment, are presented, together with estimates of the bacterial and cyanobacterial biomasses associated to the particles. The biochemical composition of the settling particles was determined in order to provide qualitative and quantitative information on the flux of readily available organic carbon supplying the deep-sea benthic communities of the Cretan Sea. Total mass flux and labile carbon fluxes were characterised by a clear seasonality. Higher labile organic fluxes were reported in trap B, indicating the presence of resuspended particles coming from lateral inputs. Particulate carbohydrates were the major component of the flux of labile compounds (on annual average about 66% of the total labile organic flux) followed by lipids (20%) and proteins (13%). The biopolymeric carbon flux was very low (on annual average 0.9 and 1.2 gC m−2 y−1, at trap A and B). Labile carbon accounted for most of the OC flux (on annual average 84% and 74% in trap A and B respectively). In trap A, highest carbohydrate and protein fluxes in April and September, corresponded to high faecal pellet fluxes. The qualitative composition of the organic fluxes indicated a strong protein depletion in trap B and a decrease of the bioavailability of the settling particles as a result of a higher degree of dilution with inorganic material. Quantity and quality of the food supply to the benthos displayed different temporal patterns. Bacterial biomass in the sediment traps (on average 122 and 229 μgC m−2 d−1 in trap A and B, respectively) was significantly correlated to the flux of labile organic carbon, and particularly to the protein and carbohydrate fluxes. Cyanobacterial flux (on average, 1.1 and 0.4 μgC m−2 d−1, in trap A and B, respectively) was significantly correlated with total mass and protein fluxes only in trap A. Bacterial carbon flux, equivalent to 84.2 and 156 mgC m−2 y−1, accounted for 5–6.5% of the labile carbon flux (in trap A and B respectively) and for 22–41% protein pool of the settling particles. These results suggest that in the Cretan Sea, bacteria attached to the settling particles represent a potential food source of primary importance for deep-sea benthic communities.  相似文献   

9.
Taxonomic composition, size composition, standing stock, and chemical composition of mesozooplankton were determined to examine the contribution of their fecal pellets to the vertical flux of organic carbon at the outside, the edge, and the center of the warm core ring. The warm core ring significantly affects not only their taxonomic composition and size composition but also their standing stock and chemical composition. The zooplankton at the center of the warm core ring was characterized by the absence of carnivores at the top of the size-trophic relation and filter feeding planktonic tunicates at the bottom. Zooplankton carbon biomass at the outside of the ring was one-third less than that at the center of the ring. The vertical flux of fecal pellets obtained from the pellet volume (12.3 mgC m−2d−1) contributed 19 to 96% of the flux (13 to 64 mgC m−2 d−1) estimated from the body carbon and the fecal pellet production rate. The estimated flux of fecal pellets was 6 to 27% of vertical carbon flux (236 mgC m−2d−1) determined by the sediment traps. Microscopic determination of fecal pellets and plankton in the sediment trap samples indicated high grazing activity during the sinking process. Those observations might suggest that particles other than fecal pellets contributed significantly to the vertical carbon flux and fecal pellets were settled directly without loss or being recycled within the surface mixed layer.  相似文献   

10.
Living benthic foraminiferal faunas of six stations from the continental shelf of the Bay of Biscay have been investigated during three successive seasons (spring, summer and autumn 2002). For the three investigated stations, bottom water oxygen concentration, oxygen penetration into the sediment and sediment organic carbon contents are all relatively similar. Therefore, we think that the density and the composition of the foraminiferal faunas is mainly controlled by the quantity and quality of organic input resulting from a succession of phytoplankton bloom events, occurring from late February to early September. The earliest blooms are positioned at the shelf break, late spring and early summer blooms occur off Brittany, whereas in late summer and early autumn, only coastal blooms appear, often in the vicinity of river outlets. In spring, the benthic foraminiferal faunas of central (B, C and D) and outer (E) continental shelf stations are characterised by strong dominance in the first area and strong presence in the second area of Nonionella iridea. In fact, station E does not serve as a major depocenter for the remains of phytoplankton blooms. If station E is not considered, the densities of this taxon show a clear gradient from the shelf-break, where the species dominates the assemblages, to the coast, where it attains very low densities. We explain this gradient as a response to the presence, in early spring, of an important phytoplankton bloom, mainly composed of coccolithophorids, over the shelf break. This observation is supported by the maximum particles flux values at stations close to the shelf break (18.5 g m− 2 h− 1) and lower values in a station closer to the coast (6.8 g m− 2 h− 1). In summer, the faunal density is maximum at station A, relatively close to more varied phytoplancton blooms that occur off Brittany until early June. We suggest that the dominant species, Nonion fabum, Cassidulina carinata and Bolivina ex. gr. dilatata respond to phytodetritus input from these blooms. In autumn, the rich faunas of inner shelf station G are dominated by N. fabum, B. ex. gr. dilatata, Hyalinea balthica and Nonionella turgida. These taxa seem to be correlated with the presence of coastal blooms phenomena, in front of river outlets. They may be favoured by an organic input with a significant contribution of terrestrial, rather low quality organic matter.  相似文献   

11.
Sinking particulate matter were obtained from twelve depths using free-drifting sediment trap arrays which were deployed in the upper 2,000 m water column of the Izu Trench, northwest Pacific Ocean. The largest flux of 146 mgC m–2 day–1 was observed at 150 m depth. The flux generally decreased with depth below the maximum, however, minor flux peaks occurred at 1,000 and 1,250 m depth (>30 mgC m–2 day–1). Sinking large particles (>100 µm) were composed of fecal pellets typical of crustaceans, macroscopic aggregates, and planktonic organisms and their fragments. Three major components constituted 19%, 20% and 29%, respectively, of the total carbon flux (averaged from the fluxes at five depths; 50, 100, 150, 1,000 and 2,000 m). Among them, fecal pellet flux and large organism flux were well correlated with the total flux. The close correspondence between the fecal flux and the total carbon flux suggests that the latter is derived from a group of variables including other biogenic matter, among which fecal pellet is one of the leading factors controlling total flux, though the latter is only a minor covariable in quantity. Vertical flux profiles of fecal pellets and their internal constituents revealed some new inputs of feces occurring through the water column. This phenomenon implies that downward transportation of organic material is characterized by feeding and egestion activities of zooplankton, including overlapping processes of sinking and dispersion of large fecal particles and repackaging of dispersed small particles.  相似文献   

12.
We compared wintertime depth distributions of the mesozooplankton community and dominant copepods between the subtropical (S1) and subarctic (K2) Pacific Oceans to evaluate the relative importance of actively transported carbon by vertical migrants to sinking particulate organic carbon flux. Primary production was higher and the ratio of sinking particulate organic carbon flux to primary production was lower at S1 compared with those at K2. The mesozooplankton community was lower in abundance and biomass at S1 compared to K2. Copepods were the dominant group among both mesozooplankton abundance and biomass throughout the water column down to 1000 m at both sites. The depth distribution showed that diel vertical migration was obvious for the mesozooplankton abundance and biomass at S1 but was not apparent for the abundance at K2, because the dominant component was diurnally migrating species at S1 and overwintering species residing at mesopelagic depths at K2. The major components of diel migrants were copepods and euphausiids at S1 and only euphausiids at K2. Respiratory flux by the diurnally migrating mesozooplankton was estimated to be 2 mgC m−2 day−1 at S1 and 7 mgC m−2 day−1 at K2. The respiratory flux was equivalent to 131% of sedimentary fecal pellet flux at S1 and 136% of that at K2. Because pathways of downward carbon flux are facilitated by the mesozooplankton community, the actively transported carbon (respiration of dissolved inorganic carbon, excretion of dissolved organic carbon and egestion of fecal pellets at depth) might be larger during winter than the flux of sinking fecal pellets.  相似文献   

13.
The common tropical sea urchin Diadema antillarum Philippi is the dominant herbivore on fringing coral reefs in Barbados, West Indies. The biological importance of Diadema as an agent of energy transfer was evaluated from energy budgets constructed for the population and for individuals of 10 size groups. Monthly energy budgets for urchins of various size groups balance within 1 kcal except for urchins of the largest size group examined. Approximately 20% of the monthly net benthic primary production of the fringing coral reef is consumed by Diadema. This percentage is considerably larger than the 7% reported for the consumption of benthic algal production by a population of the temperate water sea urchin, Strongylocentrotus droebachiensis, feeding in kelp beds but is lower than the 47% reported for the consumption of sea grass by the tropical urchin Lytechinus variegatus. Higher rates of secondary production of Diadema compared to that of Strongylocentrotus may be in part due to higher net and gross growth efficiencies exhibited by Diadema. It is apparent that Diadema is more efficient at converting its algal food resources into urchin biomass than is Strongylocentrotus of similar size. In comparison to Strongylocentrotus and Lytechinus, Diadema releases as much energy to the benthos in the form of fecal pellet detritus as do the other two species. The production of fecal pellet detritus is the most important pathway of energy transfer on the fringing coral reef. Fecal pellet detritus contributes approximately 26 kcal m−2 month−1 to the benthic community. This amount is equivalent to 7·4% of the monthly net primary production of the benthic algae or approximately 37% of the caloric intake of the urchin population. In addition fecal pellet detritus produced by Diadema contains about 10 times the caloric content of surface sediments found to the north and south of the fringing reef and approximately 1·7 times the caloric content of sediments within the reef. The utilization of this energy-rich fecal pellet detritus by other reef organisms is discussed briefly.  相似文献   

14.
《Oceanologica Acta》1998,21(6):845-858
The impact of suspended oyster culture (Crassostrea gigas, Thunberg) on oxygen and nutrient fluxes has been studied in situ, in a coastal lagoon (Thau, France), during a seasonal cycle. On the first plan of the multiple factorial correspondences analysis (MCA), seasons were well discriminated. The fluxes were maximum in summer and minimum in winter. However, this seasonal pattern was not only linked to the water temperature, as autumn and spring (similar temperatures of about 12 °C) were distinct in the second factorial plan (2.3). Oxygen uptake by the oyster cultures varied between 0 μmol m−2 h−1 (January) and 11 823 ±377 μmol m−2 h−1 (July). Ammonia and nitrate-nitrites were released into the water column respectively at a rate of 2905 ± 327 μmol m−2h−1 and 891 ± 88 μmol m−2 h−1 in the summer and 0 μmol m−2 h−1 and 177 ± 97 μmol m−2 h−1 in the cold season. During the summer, the nitrate-nitrites flux was about 20 % of the total dissolved inorganic nitrogen production. Phosphate release was low except for two periods during which an important release was measured; in May (1686 ± 44 μmol m−2 h−1) and in November (2691 ± 800 μmol m−2 h−1). No linear relation between water temperature and phosphate flux was found. In Thau Lagoon, oyster cultures (oysters and epibiota) by producing 2 × 107 mol-N y−1 play a central role in nitrogen renewal in the water column.  相似文献   

15.
The aim of this study was to investigate phytoplankton abundance, composition and vertical export in the highly stratified Krka estuary, Croatia. The estuary is stratified throughout the year, and an interface between fresh- and brackish water plays an important role in production and degradation of biogenic matter. Vertical export of particulate organic carbon (POC), phytoplankton carbon (PPC) and faecal pellet carbon (FPC) was studied by deploying sediment traps in the middle and lower reach of the estuary and in the adjacent coastal zone. Zooplankton faecal pellet (FP) production experiments were conducted to provide additional information on the potential contribution of FP to the total carbon flux. High suspended concentrations of POC, chlorophyll a and phytoplankton was found in the lower reaches of the Krka estuary, adjacent to a source of anthropogenic eutrophication. The fraction of organic detritus to the total POC flux was 61–69% inside the estuary but only 7% at the marine station. This indicates that the primary producers in the surface layer of the Krka estuary are decomposed in and below the interface and then settle as detritus to the bottom. Low sedimentation rates in the coastal zone outside the estuary revealed that the eutrophication does not spread out of the estuary. Mesozooplankton played a modest role in vertical flux regulation, due to their low abundance and dominance of smaller forms as well as low faecal pellet production rates. It is concluded that processes taking place at the freshwater-seawater interface are of major importance for the vertical carbon flux in the investigated area.  相似文献   

16.
Measurements of fecal pellet volume together with body length/body carbon weight were made for major zooplankters of the Inland Sea of Japan. The pellet volume was highly correlated with animal body size for copepods (10 species combined), a mysid (Neomysis japonica), a larvacean (Oikopleura dioica) and a pelagic shrimp (Acetes japonicus), and a specific equation was given for each group. A single equation could describe the composite relationship between pellet volume (PV, m3) and body carbon weight (C, g) for copepods andN. japonica: logPV=0.85logC+4.56. Balanid nauplii,O. dioica and a doliolidDolioletta gegenbauri produced pellets larger, butA. japonicus produced pellets smaller, than those by copepods andN. japonica of equivalent body carbon weight. In general, larger zooplankters produce larger fecal pellets. Hence, the size composition of the zooplankton community is an important parameter for the variation in the vertical flux of material via fecal pellets.  相似文献   

17.
INTRODUCTIONTherehavebeenmanystudiesandcomputationsonVToftheKuroshiointheEastChinaThisprojectwassupportedbytheNationalNaturalScienceFoundationofChinaundercontractNo.49476278.Asanditsvacation.Forexample,(1)basedonhydrographicobservationsatactionG(PN)f...  相似文献   

18.
Scavenging lysianassoid amphipods (Eurythenes gryllus) were collected with a newly designed trap to measure digestion rates with timed exposure to bait in the Canada Basin of the Arctic Ocean (2075 m) and in the Nares (3521 m) and Sohm Abyssal (4978 m) Plains, northeast Atlantic Ocean. In feeding experiments up to 157 h long, water and organic matter content were not significantly different in anterior, central and hind gut regions of individual amphipods, showing that digestion in E. gryllus conforms to the batch reactor feeding model. Ingested bait was rapidly solubilized and water content increased from < 70% to > 90% within 69 h. Digestion rates, calculated from exponential curves fitted to decreases in gut contents for dry matter and various organic components, were very high (2.1–6.5% loss h−1) for sardines ingested during short (6–11 h) incubation periods in the Canada Basin. Mackerel ingested by amphipods trapped in the Nares and Sohm Abyssal Plains were digested at lower rates (0.4-1.0% loss h−1) in in situ experiments up to 123 h. Allometric regressions described relationships between body length and calories potentially available for assimilation from one meal by male and female instars. Rapid digestion in opportunistic scavengers like E. gryllus makes gut capacity available for additional feeding when food supply is unpredictable.  相似文献   

19.
Five plant communities in Lake Rotoiti, North Island, New Zealand (38° 02’ S, 176° 24’ E) are described. In shallow water (0–2 m depth) partly protected from the prevailing westerly winds, some indigenous species form characteristic mounds. From 2 to 6 m depth the exotic macrophyte Lagarosiphon major (Ridley) Moss is the dominant and forms dense beds which appear to have completely replaced any native vegetation. Elodea canadensis Michx., a longer‐established exotic, may form a minor component of this zone, but may become the dominant species in water above and below the Lagarosiphon zone. Lagarosiphon appears to be primarily restricted to silty sand, but on pure silt areas it is replaced by Elodea and/or Nitella hookeri A. Braun. These zonations are probably static rather than successional. On underwater cliff faces and boulder shores a seasonal succession of algae was the major vegetation. Only filamentous cyanophytes grew within 1–2m of geothermal springs in the lake.  相似文献   

20.
Linking habitat distributions of prey to the probability of predation is important to understanding consumptive effects of predators on prey populations. This study reports how within-reach spatial variability of two snails, the hydrobiid Potamopyrgus antipodarum and the physid Physella acuta, was linked to habitat-based predation risk by young brown trout (Salmo trutta) of different age classes. Potamopyrgus is endemic to New Zealand streams and lakes, where it commonly co-exists with the invader P. acuta, but both snails are worldwide invaders to many freshwater systems. Examination of egested snails revealed Potamopyrgus and Physella were consumed in similar numbers within age classes. However, 10-month-old trout consumed, on average, fewer snails than 20-month-old trout, and 8-month-old trout ate essentially no snails, suggesting snails were a more important prey item for larger age-1 fish than smaller age-0 fish. No Physella were egested alive by any trout age class. However, 38% and 16% of the Potamopyrgus consumed were egested alive by 10- and 20-month-old trout, respectively, with some passing live after ~70 h in digestive tracts. Physella and the spiny-shell form of Potamopyrgus were significantly denser on macrophytes than on stony sediments in midchannel, and these habitat distributions affected their odds of consumption. Risk of consumption by trout was ~10 times greater for Physella than Potamopyrgus on stones, but their risk was similar in protective macrophytes. Odds of consumption were similar for spiny and smooth shell forms of Potamopyrgus on stones, suggesting spines do not provide protection from large predators like trout. My results suggest that brown trout can potentially exert stronger population regulatory effects on Physella than on Potamopyrgus and that these effects are partly mediated by macrophyte cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号