首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
The purpose of the present contribution is to explore the technique to use Acoustic Doppler Current Pro- filers (ADCPs) for suspended sediment flux measurements, which may be applied to coastal embayment environments such as estuaries and tidal inlets for sediment exchange and budget studies. Based on tidal cycle measurements from the entrance of ]iaozhou Bay, Shandong Peninsula, eastern China, statistical rela- tionships between the suspended sediment concentration (SSC) and ADCP echo intensity output are estab- lished. Echo intensity data obtained during an ADCP survey along two cross-sections during a spring tidal phase were transformed into SSC data. The ADCP current velocity and SSC data were then used to calculate the flux of fine-grained sediment. The results show that net sediment transport at the entrance is directed towards the open sea, with an order of magnitude of 103 t per spring tidal cycle; hence, although Jiaozhou Bay is a low SSC environment, the tidally induced suspended sediment transport can be intense.  相似文献   

2.
Profiles of tidal current and suspended sediment concentration(SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/m3 in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are responsible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Settling occurs at the slack water periods to cause SSC troughs and formation of a thin fluff layer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.  相似文献   

3.
A three-dimensional suspended sediment model(SED)developed by the present authors is coupled with the combinatorial model of COHERENS(Luyten et al.,1999) (the three-dimensional coupled hydrodynamical-ecological model for Regional and Shelf Seas) and SWAN(Holthuijsen et al.,2004) (the third generation wave model).SWAN is regarded as a subroutine of COHERENS and gets time-and space-varying current velocity and surface elevation from COHERENS.COHERENS gets time-and space-varying wave relevant parameters provided by SWAN.Effects of wave on current are applied in bottom shear stress,wave-induced depth-dependent radiation stress and surface drag coefficient calculation.At the same time,the damping function of suspended sediment on turbulence is introduced into COHERENS.So the sediment model SED has feed back on circulation model COHERENS.The SED obtains current as sociated parameters from COHERENS.Then a couple dhydrodynamic-sediment model COHERENS-SED being able to account for interaction between wave and current is obtained.COHERENS-SED is adopted to simulate three-dimensional suspended sediment transport in the Huanghe River delta.In terms of simulation results,there is obvious diffierence between top and bottom layer of wave-induced longshore current.The values of time series of sediment concentration gotten by COHERENS-SED have,generally,an accepted agreement extent with measurement.Significant wave heights and wave periods obtained by COHERENS-SED show that wave simulation case with current’s effect can give better agreement extent with measurement than case without current’s effect.In the meantime,suspended sediment concentration distributing rule obtained by COHERENS-SED is similar to former researches and measurement.  相似文献   

4.
Knowledge of sediment variation processes is essential to understand the evolution mechanism of beach morphology changes. Thus, a field measurement was conducted at the Heisha Beach, located on the west coast of the Zhujiang River(Pearl River) Estuary, to investigate the short-term variation in suspended sediment concentrations(SSCs) and the relationship between the SSC and turbulent kinetic energy, bottom shear stress(BSS), and relative wave height. Based on extreme event analysis results, extr...  相似文献   

5.
A horizontal two- dimensional numerical model is developed for estimation of sediment transport and sea bed change around a large circular cylinder under wave action. The wave model is based on an elliptic mild slope equation. The wave-induced current by the gradient of radiation stress is considered and a depth integrated shallow water equation is applied to the calculation of the current. The mass transport velocity and the bed shear stress due to streaming are considered, which are important factors affecting the sediment transport around a structure due to waves, especially in reflective areas. Wave-current interaction is taken into account in the model for computing the bed shear stress. The model is implemented by a finite element method. The results of this model are compared with those from other methods and agree well with experimental data.  相似文献   

6.
There exists a wide tidal flat in the Qiantang Estuary. In this article the sediment concentrations in the mainstream and on the tidal flat are computed separately, taking into account the transverse exchange of sediment between them. The basic equation is similar to that used in Reference [2], but the ratio of the bottom sediment concentration to the vertical average is not taken as the same to the ratio of sediment transport capacity. The ratio of sediment concentration can be determined by the computational results of a simple model and checked by the field data. The formula of the sediment transport capacity for tidal flow can be obtained by statistical analysis directly using the measured values of sediment concentration.The verification of sediment concentration has been carried out with two sections both in the mainstream and on the tidal flat during twelve successive tidal cycles. The average discrepancy between the calculated and the measured is less than 20%.  相似文献   

7.
—A comprehensive analysis is conducted based on observations on topography.tidal current.salinity.suspended sediment and bed load during the years of 1982.1983.1988.1989.1996 and 1997 in theYangtze Estuary.Results show that the deformation of tidal waves is distinct and the sand carrying capaci-ty is large within the mouth bar due to strong tidal currents and large volume of incoming water and sedi-ments.Owing to both temporal and spatial variation of tidal current.deposition and erosion are extremelyactive.In general a change of up to 0.1 m of bottom sediments takes place during a tidal period.The maxi-mum siltation and erosion are around 0.2 m in a spring to neap tides cycle.The riverbed is silted duringflood when there is heavy sediment load.eroded during dry season when sediment load is low.The annualaverage depth of crosion and siltation on the riverbed is around 0.6 m.In particular cases.it may increaseto 1.4 m to 2.4 m at some locations.  相似文献   

8.
Particle size distributions (PSDs) of bottom sediments in a coastal zone are generally multimodal due to the complexity of the dynamic environment. In this paper, bottom sediments along the deep channel of the Pearl River Estuary (PRE) are used to understand the multimodal PSDs′ characteristics and the corresponding depositional environment. The results of curve-fitting analysis indicate that the near-bottom sediments in the deep channel generally have a bimodal distribution with a fine component and a relatively coarse component. The particle size distribution of bimodal sediment samples can be expressed as the sum of two lognormal functions and the parameters for each component can be determined. At each station of the PRE, the fine component makes up less volume of the sediments and is relatively poorly sorted. The relatively coarse component, which is the major component of the sediments, is even more poorly sorted. The interrelations between the dynamics and particle size of the bottom sediment in the deep channel of the PRE have also been investigated by the field measurement and simulated data. The critical shear velocity and the shear velocity are calculated to study the stability of the deep channel. The results indicate that the critical shear velocity has a similar distribution over large part of the deep channel due to the similar particle size distribution of sediments. Based on a comparison between the critical shear velocities derived from sedimentary parameters and the shear velocities obtained by tidal currents, it is likely that the depositional area is mainly distributed in the northern part of the channel, while the southern part of the deep channel has to face higher erosion risk.  相似文献   

9.
This work presents a new approach for simulating the random waves in viscous fluids and the associated bottom shear stresses. By generating the incident random waves in a numerical wave flume and solving the unsteady two-dimensional Navier-Stokes equations and the fully nonlinear free surface boundaiy conditions for the fluid flows in the flume, the viscous flows and laminar bottom shear stresses induced by random waves axe determined. The deterministic spectral amplitude method implemented by use of the fast Fourier transform algorithm was adopted to generate the incident random waves. The accuracy of the numerical scheme is confirmed by comparing the predicted wave spectrum with the target spectrum and by comparing the nanlerical transfer function between the shear stress and the surface elevation with the theoretical transfer function. The maximum bottom shear stress caused by random waves, computed by this wave model, is compared with that obtained by Myrhaug' s model (1995). The transfer function method is also employed to determine the maximum shear stress, and is proved accurate.  相似文献   

10.
ADI method is adopted to establish a two-dimensional tidal current numerical model for Beilun Harbor based on the hydrologic data and sediment data. The current conditions of the site where the second stage project is going to be carried out are described. The analysis and calculations for the deposition and erosion in the harbor basin are performed, which provides references for the construction of the harbor. The effect of the pile group on the current is simulated by increasing the sea bed roughness which can be determined with empirical equations of artificial roughness. The method is considered to be applicable after verification with field data. The test has provided experiences for future mathematical modelling to simulate the open type hydraulic structures.  相似文献   

11.
江苏近岸海域悬沙浓度的时空分布特征   总被引:10,自引:1,他引:9       下载免费PDF全文
2006—2007年间的四个季节在江苏近岸海域69个站位采集水样,获取悬沙浓度。通过对TM遥感数据反演,获取该海域四季大面悬沙浓度,并与调查的实测悬沙浓度进行对比。结果显示,大面调查的非同步数据基本可正确反映大区域悬沙浓度的季节与空间分布趋势。悬沙浓度等值线由高至低、由陆向海分布,底层浓度约为表层的2—3倍;废黄河口和长江口外海域为悬沙浓度高值区,而海州湾为低值分布区,东南部陆架区受台湾暖流影响出现低值中心。冬季整个海域悬沙浓度均较高,其次为春季,夏季最低;废黄河口海域的高值中心在不同季节分布位置有所移动。海底沉积物的再悬浮是苏北近岸悬沙最主要的来源,河流输沙量的季节变化是影响长江口海域悬沙浓度变化的关键因子。相关分析结果表明,潮流为影响悬沙浓度分布的主要控制因子;季风、风暴潮和风浪虽对悬沙的分布具有一定的影响,但冬季的低温环境是形成该季节整个海域悬沙浓度显著偏高的重要因素。  相似文献   

12.
底边界层中沉积物的再悬浮和沉降是控制陆架海悬浮沉积物的输运的关键过程。沉积物输运过程的数值*模拟也依赖于沉积物侵蚀和沉降的关键参数的研究。本文根据济州岛西南泥质区的坐底观测估算了此处临界应力。通过底边界层声学仪器ADV和PC-ADP的流速和悬浮物浓度同步观测,基于湍生成与耗散平衡假设,使用惯性耗散法计算沉降速度。这种方法得到的沉降速度ws平均值为0.91 mm s-1,标准差为0.20 mm s-1,此结果远大于Soulbsy(1997)和LISST-ST现场观测粒径分析仪等经验方法的结果。这主要是由于两种方法的本质不同,惯性耗散法形象的刻画了底边界层的水动力,并且更加合理的现场估计沉降速度ws,然而Soulsby的方法通常适用于静水环境。我们提出了一种估计临界应力的新方法,根据悬浮颗粒物浓度时空变化的统计分析(深度平均的悬浮颗粒物浓度对时间求导数)和对应的底应力估算侵蚀临界应力τce和沉降临界应力τcd。侵蚀临界应力τce和沉降临界应力τce的变化范围为0.11-0.25 Pa,对应的中值分别为0.20 Pa和0.16 Pa,这也证实了侵蚀临界应力略大于沉降临界应力。除此之外,我们还使用了另一种方法估算临界应力,通过沉降速度间接估算的临界应力范围为0.06-0.17 Pa。  相似文献   

13.
废黄河口海域潮流动力与悬沙输运特征   总被引:2,自引:1,他引:1  
陈斌  周良勇  刘健  王凯 《海洋科学》2011,35(5):73-81
根据2006年废黄河口海域的悬沙、流速、流向的观测资料,应用短期资料的潮流准调和分析方法,对连续海流资料进行了分析,并结合悬沙资料,对悬沙质量浓度与潮流之间的动力关系进行了探讨.研究结果表明:该海域潮流属于正规半日潮流,潮流以往复流为主,离岸越远,旋转性越强;涨潮流流向以SSE为主,落潮流流向以NNW为主.悬沙质量浓度...  相似文献   

14.
黄河口潮滩以其悬浮沉积物浓度高而闻名。但是,目前对其高浓度悬浮沉积物的控制因素和来源的了解尚不清晰。因此,本文基于黄河口潮滩上为期7天的水动力(水深,波高和水流速度)和悬浮沉积物浓度观测,对黄河口潮滩不同海况下悬浮沉积物的控制因素和来源进行分析。数据显示,在大部分时间里,黄河口潮滩处于1级海况下(波高小于0.1m),SSC的变化范围为0.1-3.5 g/L,潮流的沉积物输运为悬浮沉积物的主要来源。但是,当水动力作用增强并且导致海底发生大规模侵蚀时,再悬浮沉积物成为了悬浮沉积物的主要来源,水体中的悬浮沉积物浓度可达到17.3 g/L。我们发现悬浮泥沙通量主要受平流输运的控制,而波浪引起的切应力也可通过影响悬浮泥沙浓度影响悬浮泥沙通量的变化。在观测期间, 1级海况下,流致再悬浮沉积物浓度(RSC)大于波致RSC。与此相反,在2级海况下,波致RSC大于流致RSC,例如,在观测期间出现的单个波浪事件导致6小时内海床被侵蚀了11.8 cm。该研究揭示了河控河流三角洲潮滩附近高悬浮沉积物浓度的不同控制因素,并有助于我们更好地了解三角洲的沉积和侵蚀机制。  相似文献   

15.
To understand the dispersal pattern of sediment plume and its controlling processes, a field experiment of concentrated slurry dispersal created by a dredger was conducted in the Changjiang (Yangtze River) Estuary during the 2002 flood season. An acoustic suspended sediment concentration profiler and an acoustic Doppler profiler were deployed to simultaneously observe suspended sediment concentrations (SSC) and tidal currents at the pre-selected sections shortly following the release of dredged materials. Water sampling, grab sampling and shallow coring were simultaneously carried out to obtain the SSC and grain-size texture. High-resolution SSC profiler observations showed that two distinct sediment plumes (middle level- and near-bed plumes) occurred during the intermediate tidal phase between the spring and neap due to differential settling of the sediment mixture, whereas only a benthic plume occurred due to rapid flocculation settling during the neap tide. Three subsequent stages can be identified during the dispersal of the sediment plume: (1) initially stable stage before the release; (2) unstable stage shortly following the release as a settling cloud; and (3) stable stage after the formation of a primary lutocline or a benthic plume. Enhanced mixing due to oscillatory shear flows could raise only the elevation of the lutocline in the slurry, but could not enhance the transport capacity of suspension. In the presence of high concentration, the fate of bottom sediment plume was controlled by the bottom stress, independent of the interfacial mixing.  相似文献   

16.
基于ROMS三维模型, 模拟了珠江口洪季最大浑浊带的轴、侧向分布和大、小潮变化。模拟结果表明, 珠江口伶仃洋最大浑浊带的轴向位置在22.3°—22.45°N之间, 并随着潮流变化而周期性上下游迁移。控制最大浑浊带形成的主要因素是余流作用下的底层泥沙辐聚, 决定最大浑浊带位置的主要因素是水平对流输沙, 泥沙来源主要是上游浅滩沉积物的再悬浮。小潮期间堆积在浅滩的细颗粒沉积物在大潮期间被悬浮, 搬运到下游的滞流点位置, 在中滩南部和西滩外缘落淤。“潮泵”作用在大潮期间将泥沙向下游输运, 在小潮期间向上游输运; 垂向剪切作用则有利于悬浮泥沙的陆向输运; 二者共同作用产生泥沙辐聚, 形成最大浑浊带。大、小潮期间余流结构差异不大, 主要由密度差和潮汐混合不对称共同导致, 其中前者贡献更大。  相似文献   

17.
Time series of the vertical distribution of resuspended matter and bottom current were collected concurrently during summer at a few anchored stations in the Seto Inland Sea. The vertical distribution of resuspended matter was measured every hour for about one tidal cycle and the three components of current fluctuation were obtained at each sampling station. Current data at each sampling station show that the bottom is hydraulically smooth.Assuming that the averaged vertical distribution of resuspended matter for one tidal cycle shows a steady state distribution, the settling velocityWs of resuspended matter is estimated to be in the range of 1.2×10–2 to 5.7×10–2 cm sec–1 from analysis of the averaged distributions.The relation between the erosion rate and the bottom shear stress for this study area is investigated and is compared with that for other areas. The results show that the erosion of sediment in the Seto Inland Sea during summer occurs even due to the low bottom shear stress which is considered as almost smooth hydraulically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号