首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative research on composition, biomass and production rates of zooplankton community is crucial to understand the trophic structure in coral reef pelagic ecosystems. In the present study, micro‐ (35–100 μm) and net‐ (>100 μm) metazooplankton were investigated in a fringing coral reef at Tioman Island of Malaysia. Sampling was done during the day and night in August and October 2004, and February and June 2005. The mean biomass of total metazooplankton (i.e. micro + net) was 3.42 ± 0.64 mg C·m?3, ranging from 2.32 ± 0.75 mg C·m?3 in October to 3.26 ± 1.77 mg C·m?3 in August. The net‐zooplankton biomass exhibited a nocturnal increase from daytime at 131–264% due to the addition of both pelagic and reef‐associated zooplankton into the water column. The estimated daily production rates of the total metazooplankton community were on average 1.80 ± 0.57 mg C·m?3·day?1, but this increased to 2.51 ± 1.06 mg C·m?3·day?1 if house production of larvaceans was taken into account. Of the total production rate, the secondary and tertiary production rates were 2.20 ± 1.03 and 0.30 ± 0.06 mg C·m?3·day?1, respectively. We estimated the food requirements of zooplankton in order to examine the trophic structure of the pelagic ecosystem. The secondary production may not be satisfied by phytoplankton alone in the study area and the shortfall may be supplied by other organic sources such as detritus.  相似文献   

2.
We investigated the reproductive biology of the planktonic harpacticoid copepod Euterpina acutifrons, including morphometric data, egg production rates (EPR) and viability, and weight‐specific egg production. Experiments were carried out during 1 year in an inner‐shelf area off Ubatuba (SE Brazil), a site seasonally influenced by bottom intrusions of the relatively cold and nutrient‐rich South Atlantic Central Water (SACW). We hypothesized that E. acutifrons attain higher reproductive rates when SACW penetrates in this region. Live females were incubated individually in cell culture plates during two periods of 24 h each, under controlled temperature and light conditions. Euterpina acutifrons carried on average 16.9 ± 6.9 eggs·sac?1, ranging between 10.8 ± 5.7 and 30.8 ± 7.4 eggs·sac?1. Estimated EPRs ranged from 6.3 ± 3.4 to 13.6 ± 4.2 eggs·female?1·day?1, with mean weight‐specific egg production rates of 0.06 ± 0.04 and 0.17 ± 0.08 per day. Euterpina acutifrons was not directly influenced by SACW intrusions, but body length and clutch size were positively related to temperature and chlorophyll content. Egg hatching time was clearly dependent on water temperature, as a 2 °C increase resulted in a decrease of 15 h in egg hatching time. This shows that even a small variation in temperature may considerably affect E. acutifrons population dynamics. Reproductive traits of this pelagic harpacticoid seem, therefore, to be controlled by the trade‐offs between increased food supply and the metabolic demands at low temperatures associated with SACW bottom intrusions toward this coastal area.  相似文献   

3.
The species composition, density, biomass, and distribution of zooplankton of the northeastern Sakhalin shelf, Sea of Okhotsk (Chaivo, Pil’tunskii, and Morskoi regions) were studied in October 2014. Zooplankton was represented by 15 taxonomic groups, which were dominated by Copepoda (13 species). The average density and biomass was highest in the Chaivo region (14112 ± 4322 ind./m3, 395 ± 107 mg/m3) and in the Pil’tunskii region (16692 ± 10707 ind./m3, 346 ± 233 mg/m3); the abundance of detected taxonomic groups was minimal (8–12). The average density and biomass of zooplankton was up to 4304 ± 2441 ind./m3, 133 ± 77 mg/m3 in the Morskoi region and increased with depth; the abundance of taxa was maximum (15). Four species of copepods made up the majority of the density and biomass of zooplankton: Acartia hudsonica, Eurytemora herdmani, Pseudocalanus newmani, and Oithona similis. In the Chaivo region, species of the genera Acartia, Eurytemora, and Oithona dominated and subdominated; in Pil’tunskii region, species of the genera Acartia and Oithona dominated and subdominated; and in the Morskoi region, species of the genera Oithona, Pseudocalanus, and Acartia dominated and subdominated.  相似文献   

4.
The occurrence of the invasive nonindigenous copepod Oithona davisae Ferrari and Orsi, 1984, is reported for the first time in the Aegean Sea. The data we collected in August 2017 from 14 stations along the Turkish coast of the Aegean Sea reveal the spatial distribution of O. davisae between the openning of the Dardanelles Strait in the north and the Izmir Bay in the south. The O. davisae individuals, in seven mesozooplankton samples collected from a single station, were consistently found in the inner part of the Izmir Bay from April 2015‐October 2016. The abundance of female O. davisae ranged from 4 ind./m3 in April 2015 to 31,524 ind./m3 in July 2016 and contributed to the total oithonid female population by 10.8% in April 2015 and 92.8% in September 2016. Our results show that this species is well established in the inner part of Izmir Bay and that it has become a permanent component of the copepod community in the area.  相似文献   

5.
Anchovy biomass and copepod standing stocks and growth rates on the Agulhas Bank were compared during the peak spawning period (November) in 1988 and 1989. In 1988, copepod biomass over the western Agulhas Bank was low (1,0 g dry mass·m?2) relative to anchovy biomass there (14,7 g dry mass·m?2). In November 1989 in the same area, fish biomass was much lower (5,7 g dry mass·m?2), following a recruitment failure, and copepod biomass was higher (2,4 g dry mass·m?2), possibly as a result of lesser predation by anchovy. By contrast, the eastern Agulhas Bank had a larger biomass of copepods (4–6 g dry mass·?2) and a lower biomass of anchovy during both years. Knowing, from laboratory studies, that a prey biomass of 0,78 g·m?2 is required for fish to obtain their daily maintenance ration, it is suggested that spawning on the western Agulhas Bank was food-limited in 1988. Copepods on the western Bank may be replaced by local growth or transport from the eastern Bank. Growth rates of copepods on the western Bank were 10–50 per cent of maximum in 1988, but total production (c. 100 mg dry mass·m?2·day?1) was low, primarily because biomass was low and less than the rate of consumption by anchovy (243 mg copepod dry mass·m?2·day?1). On the eastern Bank, copepod production exceeded anchovy consumption and it is concluded that the flux of copepod biomass onto the western Bank may be as important as local growth in replenishing copepod stocks there. Feeding conditions for anchovy on the western Agulhas Bank are often marginal compared to the situation on the eastern Bank, and it is suggested that the selection of the western Bank as the major spawning area is related more to the success of transport and survival of eggs and larvae on the West Coast recruiting grounds than to feeding conditions per se.  相似文献   

6.
Multiple biotic and abiotic drivers regulate the balance between CO2 assimilation and release in surface waters. In the present study, we compared in situ measurements of plankton carbon metabolism (primary production and respiration) to calculated air–water CO2 fluxes (based on abiotic parameters) during 1 year (2008) in a hypereutrophic tropical estuary (Recife Harbor, NE Brazil – 08°03′S, 34°52′W) to test the hypothesis that high productivity leads to a net CO2 flux from the atmosphere. The calculated CO2 fluxes through the air–water interface (FCO2) were negative throughout the year (FCO2: –2 to –9 mmol C·m?2·day?1), indicating that Recife Harbor is an atmospheric CO2 sink. Respiration rates of the plankton community ranged from 2 to 45 mmol C·m?2·hr?1. Gross primary production ranged from 0.2 to 281 mmol C·m?2·hr?1, exceeding respiration during most of the year (net autotrophy), except for the end of the wet season, when the water column was net heterotrophic. The present results highlight the importance of including eutrophic tropical shallow estuaries in global air–water CO2 flux studies, in order to better understand their role as a sink of atmospheric CO2.  相似文献   

7.
Copepods are considered to be a vital component connecting the unique macrotidal environment to the high productivity and high biodiversity of the Ariake Sea. To examine the spatiotemporal succession of copepod communities, we conducted monthly sampling (vertical hauls of a 100-μm mesh plankton net) in three neighboring macrotidal estuaries between 2005 and 2006. Irrespective of the season, three copepod communities were recognized in relation to the relatively long gradients of salinity and turbidity along the Chikugo and Midori River estuaries. The oligohaline community (salinity 1–10) was observed at higher turbidities (>100 NTU), whereas the freshwater (salinity <1) and meso/polyhaline (salinity >10) communities were associated with lower turbidities (<100 NTU). The oligohaline calanoid Sinocalanus sinensis occurred only in the Chikugo River estuary, maintaining a large biomass (dry weight >10 mg m?3) in or close to the well-developed estuarine turbidity maximum (ETM) throughout the year. In the Midori River estuary, the oligohaline community lacked S. sinensis and showed a minimum biomass during winter (<10 mg m?3). In both estuaries, the freshwater community always remained at a small biomass (<1 mg m?3), whereas the meso/polyhaline community showed marked seasonal changes in biomass (0.1–657 mg m?3). The prevalence of higher salinities allowed only the meso/polyhaline community to occur in the Kuma River estuary. In summary, S. sinensis characterized the copepod community distinctive of the well-developed ETM, potentially serving as an important link to higher trophic levels during winter when copepods are scarce in other areas.  相似文献   

8.
Knowledge of the nutritional conditions of coastal commercial fish populations is key to understanding stock health status, and is essential when making reasonable exploitation and management plans. Here, we present the first results on the condition and feeding preferences of two coastal fish species, Diplodus sargus (Linnaeus, 1758) and Pagellus erythrinus (Linnaeus, 1758). Using stable isotope and biochemical analyses, we tested the potential effects of a marine protected area (MPA) and the occurrence of a dramatic coastal storm on the condition and quality of nutrition. The results suggest that both condition (lipids) and nutrition quality (fatty acids, FAs) in P. erythrinus and D. sargus depend upon on food availability in the area in which they were captured. Pagellus erythrinus individuals inside the MPA stored higher quantities of lipids [46.73 ± 19.00 μg lipid·mg organic matter (OM)?1] than those outside the MPA (15.63 ± 5.30 μg lipid·mg OM?1) only before the storm. Diplodus sargus showed different FA signatures inside and outside the MPA before and after the storm. These results suggest that D. sargus increased their quality of nutrition inside (16.62 ± 3.17 μg FA·mg OM?1) versus outside (7.88 ± 2.36 μg FA·mg OM?1) the MPA, owing to increased food diversity and availability. Conversely, P. erythrinus did not show differences in nutritional quality inside (18.12 ± 1.13 μg FA·mg OM?1) or outside (18.81 ± 1.42 μg FA·mg OM?1) the MPA, possibly because of the increase in ingestion not affecting the studied parameters. In P. erythrinus, the FA concentration decreased after the storm, but in D. sargus, a change in lipid composition was observed. These results suggest that P. erythrinus appears to be more impacted by food quality (different saturated and unsaturated FAs) than D. sargus, owing to a more restrictive diet. We hypothesize that the observed differences between inside and outside the MPA are not only related to the degree of protection, but also to the feeding preferences and behaviour of both fishes.  相似文献   

9.
We present the results of the first study to highlight the demography, morphometry and growth rates of Spinimuricea klavereni, a rare Mediterranean endemic gorgonian exceptionally common in shallow depths of the Northeast Marmara Sea. In the study area, this species forms vast populations on rocks, boulders and attached to pebbles/stones/shells on soft substrates between 20 and 45 m depth, with a total average density of 0.3 colonies·m?2 but comprising patches up to 3 colonies·m?2. Colonies, which are on average 42.9 (±20.1) cm in height, can reach up to 110 cm. Unlike other Mediterranean gorgonians, the colonies studied here showed fast growth rates that decreased with increasing colony height, between 1.5–11.1 and 4.96 ± 3.01 cm·year?1 on average. The low necrosis and high growth rates displayed by this species in the Northeast Marmara Sea confirm the previously hypothesized opportunistic behaviour of the species. The unique community consisting of S. klavereni and other rare gorgonian/soft corals has limited distribution in this area and should be considered to be a vulnerable marine ecosystem. Therefore we recommend that some conservation measures are taken, including the prohibition of all fisheries and anchoring over these assemblages.  相似文献   

10.
The brown sea cucumber Isostichopus fuscus (Ludwig, 1875) has been subjected to strong fishing pressure and is currently considered an endangered species by the IUCN Red List of Threatened Species. Spatial and temporal variations in density were analysed and population parameters of I. fuscus were estimated in three localities of the Southern Mexican Pacific. Density was estimated using circular transects covering a 300 m2 area in each locality. Body length and weight were also measured. The mean density was 0.018 ± 0.013 individuals·m?2, and was statistically significantly lower during summer. The mean length and weight were 22.4 ± 3.8 cm and 396 ± 130 g, respectively, and statistically significant differences were found among localities. The weight–length relationship was W = 0.28·L1.32 and the mean relative condition index (Kn) = 1.04 ± 0.31. The von Bertalanffy growth equation was Lt = 38.7·(1–exp(?0.4·t)). The lowest values of length, weight and age were found at Dos Hermanas, suggesting that this locality could be favorable for the settlement of larvae and recruitment and growth of juveniles. The present study is the second to estimate densities of I. fuscus and the first one to publish data on size structure and growth for the population at Bahias de Huatulco. The densities were so low in the three sampled localities that none of them would be able to support a fishery, even under a sustainable management scheme. The information collected in the present study could be helpful for management programs of the Huatulco National Park, as all the data used for these currently come mainly from the populations of I. fuscus in the Gulf of California.  相似文献   

11.
2001—2002年粤东柘林湾浮游动物的生态学研究   总被引:25,自引:3,他引:25  
2001年4月-2002年4月,利用生态学方法对粤东柘林湾浮游动物进行的周年调查结果表明,粤东柘林湾浮游动物有桡足类34属60种,枝角类3属3种,及端足类、磷虾、糠虾、多毛类、毛颚类、被囊类、水母和各种浮游幼体虫.浮游动物的群落构成小型化趋势明显,因为体长不足0.6 mm的小型优势种强额拟哲水蚤(Paracalanus crassirostris)、短角长腹剑水蚤(Oithona brevicornis)和鸟喙尖头(氵蚤)(Penilia avirostris)在浮游动物总个体数中所占比例合计高达57.1 %.浮游动物的种类数、总个体数和生物量的平面分布模式大体相似,即湾外大于湾内,外侧大于内侧,东部大于西部.总个体数与生物量的周年变化曲线与水温的变化趋势非常相似,高峰位于高温季节的8-9月,低谷位于冬季2月.调查期间柘林湾浮游动物非常丰富,年均总个体数达15.8×103 ind/m3,生物量达227.8mg*dW/m3.在单一调查年度内,浮游动物丰度与水温、浮游植物细胞数呈显著正相关关系.在不同年份,浮游动物丰度与浮游植物密度则表现为负相关的趋势.  相似文献   

12.
Porites panamensis is a hermatypic coral present in the eastern Pacific Ocean. Skeletal growth parameters have been reported, but studies of the relationship between annual calcification rates and environmental controls are scarce. In this study, we investigated three aspects of the annual calcification rates of P. panamensis: growth parameters among three P. panamensis populations; the sea surface temperature as a calcification rate control spanning a latitudinal gradient; and calcium carbonate production among three sites. Growth parameters varied among the sites due to the colony growth form. Massive colonies in the north showed a higher calcification rate than encrusting colonies in the south (mean: 1.22–0.49 g CaCO3 · cm?2 · yr?1), where variations in calcification rates were related to growth rate (0.91–0.38 cm · yr?1) rather than to skeletal density differences (overall mean ± SD, 1.31 ± 0.04 g CaCO3 · cm?3). Our results showed a positive linear relationship between annual calcification rates and sea surface temperatures within these P. panamensis populations. Differences were related to distinct oceanographic environments (within and at the entrance of the Gulf of California) with different sea surface temperature regimes and other chemical properties. Different populations calcified under different environmental conditions. Calcium carbonate production was dependent upon the calcification rate and coral cover and so carbonate production was higher in the north (coral cover 12%) than in the south (coral cover 3.5). Thus, the studied sites showed low calcium carbonate production (0.25–0.43 kg CaCO3 · m?2 · yr?1). Our results showed reduced calcification rates, regional temperature regime control over calcification rates, different growth forms, low coral cover and low calcium carbonate production rates in P. panamensis.  相似文献   

13.
Leaf growth, biomass and production of Cymodocea nodosa were measured from October 2006 to September 2007 in Monastir Bay (Tunisia). Shoot density showed a clear seasonal pattern, increasing during spring and summer and decreasing during fall and winter. Monthly mean shoot density ranged between 633 ± 48 and 704 ± 48 shoots?m?2. The monthly average total biomass ranged between 560 ± 37 and 646 ± 32 g dry weight (DW)?m?2. Total biomass varied significantly among stations and sampling times but did not show seasonal variation. Leaf plastochrone intervals varied seasonally, with an annual average of 28–30 days. Leaf productivity was highest in August (2.61 g DW?m?2?day?1) and lowest in February (0.35 g DW?m?2?day?1). Annual belowground primary production varied from 263 to 311 g DW?m?2?year?1. Annual leaf production was approximately equal for all the stations (from 264 to 289 g DW?m?2?year?1). Variability in water temperature, air temperature and salinity explained the annual variability in biological characteristics. Changes in belowground and total biomass were not correlated with seasonal variability in the environmental parameters monitored. Additionally, a literature review was conducted of C. nodosa features at other Mediterranean sites, encompassing 30 studies from 1985 to 2014.  相似文献   

14.
Jellyfish are often the most prominent components of plankton, with severe consequences for fisheries and tourism. However, in tropical regions, there is much uncertainty about these consequences due to the lack of basic data. Our objective was to improve the knowledge about jellyfish in the Western Atlantic, with an emphasis on understanding diversity, abundance, and distribution patterns. Samples were collected at 34 stations in 1995 using a 300‐μm‐mesh Bongo net. The 21 species identified belonged to Hydromedusae (11), Siphonophora (nine), and Scyphomedusae (one). The overall mean density was low (5.2 ± 5.3 ind. m?3). Total Hydromedusae biomass was 130.86 mg C m?3, and total Siphonophora biomass was 19.04 mg C m?3. Chelophyes appendiculata (Eschscholtz, 1829) was the most frequent species captured in the oceanic samples, and Aglaura hemistoma (Péron & Lesueur, 1810) was the most common in the neritic region. The latter species is sometimes characterized as a bloom associated with the most polluted and eutrophic river plumes. The main role of jellyfish species in the area is as a higher‐order carnivore. A cross‐shelf significant difference (P < 0.05) was registered, with higher species numbers in oceanic regions and higher densities and biomass in neritic regions.  相似文献   

15.
Myanmar is tenth among the world’s fish-producing countries and third in ASEAN (Association of Southeast Asian Nations). To understand the mechanisms underlying the high production, oceanographic and phytoplankton surveys, including primary productivity measurements based on pulse amplitude modulation fluorometry, were conducted near an active fishing ground near Myeik City. Three surveys, one in each of the representative seasons and covering the characteristic coastal environments, showed well-defined seasonality in primary production and phytoplankton occurrence. End of the dry season was the most productive, with productivity of 2.59 ± 1.56 g C m?2 day?1 and high concentration of chlorophyll a (3.14 ± 2.64 µg L?1). In this season, the phytoplankton population was dominated by high densities of the diatoms Bellerochea horologicalis and Chaetoceros curvisetus, whereas primary productivity was low at the onset of the dry season, 1.36 ± 0.77 g C m?2 day?1. However, this low primary production might be compensated by activation of microbial food chains originating from high dissolved organic carbon. The rainy season exhibited the lowest production, 6.6% of the end of the dry season, due to the extensive discharge of turbid water from the rivers which lowered euphotic layer depth and resulted in an unusually high diffuse attenuation coefficient of 2.30 ± 1.03 m?1. This incident of turbid water may be related to soil erosion from deforestation and mangrove deterioration. This research reveals the seasonal trend in Myanmar’s coastal productivity and its relationship to the tropical monsoon climate as well as emphasizing the importance of tropical coastal environments to the sustainability of the fisheries.  相似文献   

16.
The dynamics of methane (CH4) flux in relation to populations of methanogenic and methanotrophic bacteria was studied under the different biophysical conditions of the Indian Sundarban mangrove ecosystem. Soil depth profile analysis (up to 60 cm) in the lower littoral zone (LLZ) revealed that a methanogenic population of 6.45 ± 0.19 × 104 cells/g dry weight (dry wt) of soil accounted for a CH4 production rate of 6.23 ± 3.53 × 103 µmol m?2 day?1, whereas in the surface soil, a methanogenic population of 3.34 ± 0.37 × 10cells/g dry wt of soil accounted for a CH4 production rate of 31.6 ± 0.57 µmol m?2 day?1. The CH4 oxidation rate at 60 cm depth in the LLZ was 24.42 ± 1.28 µmol m?2 day?1, with an average methanotrophic population of 1.33 ± 0.43 × 104 cells/g dry wt of soil, whereas in the surface soil, the oxidation rate and average population were 3.38 ± 1.43 × 10µmol m?2 day?1 and 12.80 ± 2.54 × 10cells/g dry wt of soil, respectively. A similar soil profile in terms of CH4 dynamics and the populations of methanogenic and methanotrophic bacteria was found in the mid‐littoral and upper littoral zones of the studied area. The results demonstrate that most of the produced CH4 (approximately 60%) was oxidized by methanotrophic bacteria present in the soil, thus revealing their principal role in regulating the CH4 flux from this unique ecosystem.  相似文献   

17.
Egg production rates and/or hatching success in the copepods Acartia clausi, Calanus helgolandicus and Temora longicornis were negatively affected by a late spring (May–June 2003) phytoplankton bloom in the North Adriatic Sea, dominated mainly by the large diatom Cerataulina pelagica. Highest total concentrations of 3.3·104 cells·ml?1 were located in the vicinity of the Po River, which also corresponded to the area where the highest numbers of phaeophorbides were measured (0.779, 0.528 and 0.419 μg·l?1, respectively, compared to an average of the remaining stations of 0.183 ± 0.049 SD), suggesting some grazing on the bloom. Phytoplankton biomass in terms of carbon was dominated by diatoms, representing on average 42% of total phytoplankton carbon and more than 80% at several stations. Cerataulina pelagica, Cyclotella spp., Chaetoceros spp. and small unidentified centric diatoms dominated the diatom community numerically but C. pelagica was by far the dominant diatom in terms of carbon due to its large cell size. This species represented more than 60% of the diatom biomass at nine of the 14 stations sampled, and was absent only at one station, which was the most offshore station sampled during the cruise. Although polyunsaturated aldehydes (PUAs) were not detected, other oxylipins which are hydroxy and keto derivatives of eicosapentaenoic and docosahexaenoic acids that affect copepod reproduction were found in these samples. Hence, we can attribute the negative impact of diatoms not only to PUAs, as previously believed, but also to these compounds. This is the first direct evidence of the presence of oxylipins other than PUAs in marine blooms dominated by diatoms.  相似文献   

18.
The biomass and productivity of phytoplankton populations inshore on the west coast of South Africa were investigated towards the end of the upwelling season, a period when high-biomass dinoflagellate blooms are common. Productivity was estimated from natural fluorescence measurements (PNF ), using photosynthesis (P) v. irradiance (E) relationships (PE ) and by means of the in situ 14C-method (PC ) A linear regression of PNF productivity against PC and PE productivities yielded a slope of 0.911 and an r 2 of 0.83 (n = 41). Physical and biological variability was high inshore, reflecting alternating periods of upwelling and quiescence. Mean chlorophyll inshore (within a 12 m water column) ranged from 0.7 to 57.8 (mean = 8.9) mg·m&minus3, mean PNF productivity ranged from 8.4 to 51.0 (mean = 24.6) mgC·m?3·h?1 and daily integral PNF productivity from 0.8 to 4.8 (mean = 2.3) gC·m?2·day?l. Transects sampled during active and relaxation phases of upwelling had different chlorophyll distributions. High chlorophyll concentrations (sometimes >50 mg·m?3) were associated with surface blooms within the region of the upwelling front. Estimates of daily water-column PNF productivity within these frontal blooms ranged from 4.0 to 5.6 gC·m?2·day?1. With relaxation of wind stress, blooms dominated by dinoflagellates flooded shorewards and often formed red tides. Chlorophyll concentrations of > 175 mg·m?3 and productivity rates > 500 mgC·m?3·h?1 and 12 gC·m?2·day?1 were measured during a particularly intense red tide. Offshore, the water column was highly stratified with a well-defined subsurface chlorophyll maximum layer within the pycnocline region. Estimates of daily water-column PNF productivity ranged from 2.4 to 4.0 gC·m?2·day?1 offshore. The high productivity of shelf waters on the West Coast in late summer can be ascribed largely to dinoflagellate populations and their success in both upwelling systems and stratified conditions.  相似文献   

19.
Habitat heterogeneity can influence biological communities by providing a diversity of areas that can be occupied by different species. Sandy beach surf zones are often considered homogenous environments; however, sand bars moved by currents and waves can produce trench‐like shapes or troughs that provide heterogeneity. The influence of habitat heterogeneity produced by sand movement is unclear despite the fact that surf zones are an important habitat for larval and juvenile fish and macrocrustaceans. To determine if, and how, the fish and macroinvertebrate communities present in trough and non‐trough or flat areas of Oregon surf zones differ, we compared species assemblages in both areas at three beaches adjacent to estuary mouths over 2 years. Troughs had different communities compared with flat areas, with higher total catch (mean ± SD = 123.2 ± 122.1 versus 43.6 ± 44.5 individuals × 100 m?2) and taxon richness (6.7 ± 2.7 versus 4.0 ± 2.3 taxa); these differences were potentially due to water movement, prey availability and sediment size. The fish and macroinvertebrate communities did not vary between years but there were significant differences among beaches, with the most distinct community present at the only beach adjacent to an estuary without a jetty at its mouth, which was possibly due to higher species movement between the surf zones and estuary. Fish and macrocrustacean surf zone communities varied spatially within and among beaches in relation to habitat heterogeneity provided by sand movement and, potentially, the influence of adjacent habitats.  相似文献   

20.
The effect of self‐shading and competition for light in the seagrass Enhalus acoroides were investigated with a density reduction experiment in Haad Chao Mai National Park, Trang Province, Thailand. The study was carried out in a monospecific meadow with a natural density of 141.0 ± 8.7 shoots·m?2. The intent was to determine the response of E. acoroides beds to loss of shoots and thinning, which often occur during typhoons and severe storm activity. Permanent quadrats were manipulated by clipping the seagrass shoots to 140, 72, 36 and 16 shoots·m?2, to yield natural, 50%, 25% and 10% densities, respectively. Reducing shoot density in E. acoroides increased underwater light intensity below the canopy, generating increased leaf surface area and shoot weight. Seagrass leaf width, growth rate, and number of leaves per shoot also increased with greater light. The extent of flowering varied among treatments with no consistent trend. Our results demonstrate that increasing the available light to E. acoroides produces an increasing leaf size response as self‐shading in the bed is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号