首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
基于高阶边界元的三维数值波浪港池   总被引:8,自引:1,他引:8  
初步建立了一个基于高阶边界元的三维数值波浪港池,港池具有造波和消波功能。采用高阶边界元16节点四边形单元和基于二阶显式泰勒展开的混合欧拉-拉格朗日时间步进求解带自由表面的完全非线性势流方程。模型中对于影响数值精度的问题作了细致的处理。数值计算结果表明本港池可以用来模拟非线性波浪的传播,具有很高的数值精度和稳定性。  相似文献   

2.
三维完全非线性波浪水槽的数值模拟   总被引:7,自引:0,他引:7  
用有限元求解拉普拉斯方程,建立了三维完全非线性数值波浪水槽.跟踪流体自由表面的方法为满足完全非线性自由表面条件的半拉格朗日法,对离散单元采用20节点的六面体二次等参数单元.并把数值计算结果与水面初始升高产生箱体内流体运动解析解和二阶斯托克斯波理论解进行了对比,结果表明该模型是稳定的、守恒的,能精确模拟非线性波浪的产生和传播.  相似文献   

3.
基于高阶边界元的三维数值波浪港池--波浪破碎的模拟   总被引:5,自引:1,他引:4  
在势流理论的框架内,采用高阶边界元方法和混合欧拉-拉格朗日法,实现了对三维波浪破碎过程的数值模拟.数值模型使用可调节时间步长的基于二阶显式泰勒展开的混合欧拉-拉格郎日时间步进来求解自由表面的演化过程.在所使用的边界元方法中,采用16节点三次滑移四边形单元来表示,这种单元在单元内具有高阶的精度同时在单元之间具有良好的连续性.给出了孤立波的传播和周期性非线性波浪沿缓坡传播的计算结果,表明数值模型具有良好的稳定性.  相似文献   

4.
Weoncheol Koo 《Ocean Engineering》2009,36(9-10):723-731
A pneumatic-type floating breakwater is simulated in the time–domain to evaluate wave blocking and wave energy absorption. For accurate nonlinear time–domain simulation, a fully nonlinear numerical wave tank (NWT) technique has been used. In the present study, the NWT for the pneumatic breakwater is extended to the case of restrained body motion using the mode-decomposition method in the acceleration potential field. In particular, the effect of individual body motion coupled with pneumatic damping in the chamber is investigated for the case in which the breakwater is only allowed to move one degree-of-freedom: for instance, using a heave-only allowable body. The present results are compared with various motion cases as well as a box-shaped breakwater.  相似文献   

5.
Fully nonlinear wave-body interactions with surface-piercing bodies   总被引:1,自引:0,他引:1  
W.C. Koo  M.H. Kim   《Ocean Engineering》2007,34(7):1000-1012
Fully nonlinear wave-body interactions for stationary surface-piercing single and double bodies are studied by a potential-theory-based fully nonlinear 2D numerical wave tank (NWT). The NWT was developed in time domain by using boundary element method (BEM) with constant panels. MEL free surface treatment and Runge–Kutta fourth-order time integration with smoothing scheme was used for free-surface time simulation. The acceleration-potential scheme is employed to obtain accurate time derivative of velocity potential. Using the steady part of nonlinear force time histories, mean and a series of higher-harmonic force components are calculated and compared with the experimental and numerical results of other researchers. The slow-decaying second-harmonic vertical forces are investigated with particle velocities and corresponding body pressure. Typical patterns of two-body interactions, shielding effect, and the pumping/sloshing modes of water column in various gap distances are investigated. The pumping mode in low frequencies is demonstrated by the comparison of velocity magnitudes.  相似文献   

6.
A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.  相似文献   

7.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2006,33(17-18):2310-2331
The problem of wave propagation in a fully nonlinear numerical wave tank is studied using desingularized boundary integral equation method coupled with mixed Eulerian–Lagrangian formulation. The present method is employed to solve the potential flow boundary value problem at each time step. The fourth-order predictor–corrector Adams–Bashforth–Moulton scheme is used for the time-stepping integration of the free surface boundary conditions. A damping layer near the end-wall of wave tank is added to absorb the outgoing waves with as little wave reflection back into the wave tank as possible. The saw-tooth instability is overcome via a five-point Chebyshev smoothing scheme. The model is applied to several wave propagations including solitary, irregular and random incident waves.  相似文献   

8.
利用完全非线性数值波浪水槽技术研究水下平板与波浪的相互作用。假定水下平板厚度极薄、刚性,位于有限水深并且非常接近自由水面。应用四阶龙格库塔方法追踪每一时刻的波面形状,采用阻尼层来吸收反射波以保证算法的稳定性,同时引入平滑和重组的方法抑制自由表面控制点的较高梯度。通过对波浪与浮动圆柱相互作用的数值模拟证实了数值波浪水槽方法的有效性,计算结果与线性理论吻合良好。在波浪数值水槽方法中引入造波板模拟波浪产生并与水下平板发生相互作用,应用傅立叶解析方法对波面变形、波浪力作了分析。结果表明在板非常接近自由水面的情况下会表现出现很强的非线性,揭示了线性理论的局限性。  相似文献   

9.
In this paper, we report on the use of a numerical wave tank (NWT), based on fully nonlinear potential flow (FNPF) equations, in driving simulations of flow and sediment transport around partially buried obstacles. The suspended sediment transport is modeled in the near-field in a Navier-Stokes (NS) model using an immersed-boundary method and an attached sediment transport simulation module. Turbulence is represented by large eddy simulation (LES). The NWT is based on a higher order boundary element method (BEM), with an explicit second-order time stepping. Hence, only the NWT boundary is discretized. The solution for the velocity potential and its derivatives along the boundary is obtained in the BEM, which subsequently provides a solution at any required internal point within the domain. At initial time, the NS-LES model domain is initialized with the 3-D velocity field provided by the NWT and driven for later time by the pressure gradient field obtained in the NWT. Incident wave fields, as specified in the NWT to drive sediment transport, can be arbitrary. Applications are presented here for single frequency waves, such as produced by a harmonic piston wavemaker in the laboratory, and modulated frequency wave groups. The feasibility of coupling the irrotational flow and NS solutions is demonstrated.  相似文献   

10.
Hung-Jie Tang  Chai-Cheng Huang   《Ocean Engineering》2008,35(17-18):1800-1810
We investigated the phenomenon of Bragg reflection of submerged structures in a 2D fully nonlinear numerical wave tank (NWT) based on the boundary integral equation method (BIEM). This model was validated by comparing not only the free surface elevations with that of the analytic solution of Stokes’ second-order wave theory, but also the reflection coefficients of submerged bars with that from other sources. The results of the present model show that the free surface nonlinear effect on the reflection coefficient of the primary resonance reduces significantly for all of the submerged bars considered. Finally, a case study is presented to demonstrate the reflecting capacity and overall performance of various submerged bars. Results indicate that sinusoidal bar has the maximum reflection capacity at the primary resonance, but the trapezoidal submerged bar is suggested as the better option for the practical convenience of coastal underwater construction.  相似文献   

11.
Nonlinear interactions between large waves and freely floating bodies are investigated by a 2D fully nonlinear numerical wave tank (NWT). The fully nonlinear 2D NWT is developed based on the potential theory, MEL/material-node time-marching approach, and boundary element method (BEM). A robust and stable 4th-order Runge–Kutta fully updated time-integration scheme is used with regriding (every time step) and smoothing (every five steps). A special φn-η type numerical beach on the free surface is developed to minimize wave reflection from end-wall and wave maker. The acceleration-potential formulation and direct mode-decomposition method are used for calculating the time derivative of velocity potential. The indirect mode-decomposition method is also independently developed for cross-checking. The present fully nonlinear simulations for a 2D freely floating barge are compared with the corresponding linear results, Nojiri and Murayama’s (Trans. West-Jpn. Soc. Nav. Archit. 51 (1975)) experimental results, and Tanizawa and Minami’s (Abstract for the 6th Symposium on Nonlinear and Free-surface Flow, 1998) fully nonlinear simulation results. It is shown that the fully nonlinear results converge to the corresponding linear results as incident wave heights decrease. A noticeable discrepancy between linear and fully nonlinear simulations is observed near the resonance area, where the second and third harmonic sway forces are even bigger than the first harmonic component causing highly nonlinear features in sway time series. The surprisingly large second harmonic heave forces in short waves are also successfully reproduced. The fully updated time-marching scheme is found to be much more robust than the frozen-coefficient method in fully nonlinear simulations with floating bodies. To compare the role of free-surface and body-surface nonlinearities, the body-nonlinear-only case with linearized free-surface condition was separately developed and simulated.  相似文献   

12.
《Ocean Engineering》2006,33(8-9):983-1006
Nonlinear waves and forces induced by a wedge-shape wave maker were simulated in a potential-theory-based fully nonlinear 2D Numerical Wave Tank (NWT). The NWT is developed in a time domain by using Boundary Element Method (BEM) including Mixed Eulerian–Lagrangian method (MEL) and Runge–Kutta 4th-order (RK4) integration as a time marching process. For ensuring accurate nonlinear free surface both material-node and semi-Lagrangian approach are independently developed for crosschecking. The acceleration-potential scheme is used for obtaining accurate time derivative of velocity potential. The developed NWT is utilized to calculate water particle velocity and a series of higher-harmonic force components on the wave maker. The added-mass and radiation-damping coefficients of the wave maker are also obtained from the least-square method. The simulation results are compared with the experimental and numerical results of other researchers. To compare the relative importance of free-surface and body-surface nonlinearities, a body nonlinear formulation is independently developed. Force by body nonlinear method is in good agreement with fully nonlinear result in case of low body-stroke frequency.  相似文献   

13.
潜堤后高阶自由谐波的研究   总被引:1,自引:1,他引:0  
基于高阶边界元方法的完全非线性数值水槽模型模拟潜堤地形上波浪的传播变形,通过与实验值进行比较,考察数学模型的正确性.采用两点法分离得到堤后高倍频自由波来研究入射波参数、水深对堤后高倍频自由波的影响.研究发现:基频波、二阶和三阶自由波幅值分别与入射波波幅成线性、二次和三次函数关系,基频波幅值基本不随波浪周期变化,而二阶和...  相似文献   

14.
A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Eulerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The boundary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropriate wave theory. At the downstream boundary, an artificial damping zone is used to prevent wave reflection back into the computational domain. Using the image Green function in the whole fluid domain, the integrations on the two lateral walls and bottom are excluded. The simulation results on extreme wave elevations in finite and infinite water-depths are compared with experimental results and second-order analytical solutions respectively. The wave kinematics is also discussed in the present study.  相似文献   

15.
Inviscid three-dimensional free surface wave motions are simulated using a novel quadratic higher order boundary element model (HOBEM) based on potential theory for irrotational, incompressible fluid flow in an infinite water-depth. The free surface boundary conditions are fully non-linear. Based on the use of images, a channel Green function is developed and applied to the present model so that two lateral surfaces of an infinite-depth wave tank can be excluded from the calculation domain. In order to generate incident waves and dissipate outgoing waves, a non-reflective wave generator, composed of a series of vertically aligned point sources in the computational domain, is used in conjunction with upstream and downstream damping layers. Numerical experiments are carried out, with linear and fully non-linear, regular and focused waves. It can be seen from the results that the present approach is effective in generating a specified wave profile in an infinite water-depth without reflection at the open boundaries, and fully non-linear numerical simulations compare well with theoretical solutions. The present numerical technique is aimed at efficient modelling of the non-linear wave interactions with ocean structures in deep water.  相似文献   

16.
Second-Order Wave Diffraction Around 3-D Bodies by A Time-Domain Method   总被引:1,自引:1,他引:1  
BAI  Wei 《中国海洋工程》2001,(1):73-84
A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedure to establish the corresponding boundary value problems with respect to a time-independent fluid domain. A boundary element method based on B-spline expansion is used to calculate the wave field at each time step, and the free surface boundary condition is satisfied to the second order of wave steepness by a numerical integration in time. An artificial damping layer is adopted on the free surface for the removal of wave reflection from the outer boundary. As an illustration, the method is used to compute the second-order wave forces and run-up on a surface-piercing circular cylinder. The present method is found to be accurate, computationally efficient, and numerically stable.  相似文献   

17.
非线性波浪波面追踪的一种新模式   总被引:1,自引:0,他引:1  
基于Laplace方程的Green积分表达式和波面BemouUi方程所建立的非线性波动数学模型,是一个时域上具有初始值的边值问题,而精确地追踪自由表面的波动位置,给出波面运动瞬时的波面高度和波面势函数,是建立时域内非线性波浪数值模式的基础。本文采用0-1混合型边界元剖分计算域边界并离散Laplace方程的Green积分表达式,采用有限元剖分自由水面并推导满足自由表面非线性边界条件的波面有限元方程,联立计算域内以节点波势函数和波面位置高度的时间增量为未知量的线性方程组,通过时步内的循环迭代,给出每个时步上的波面位置和波面势函数,从而建立了一种新的非线性波浪波面追踪模式。数值造波水槽内的波浪试验表明,其数值模拟结果具有良好的计算精度。  相似文献   

18.
宁德志  苏晓杰  滕斌 《海洋学报》2015,37(3):126-133
针对波浪与带有窄缝多箱体结构作用产生的流体共振问题,建立了基于域内源造波技术的二维非线性时域数值波浪水槽模型,其中自由水面满足完全非线性运动学和动力学边界条件,窄缝内流体引入人工阻尼来等效由于涡旋运动和流动分离引起的黏性耗散,计算域边界采用高阶边界元进行离散。通过模拟三箱体间两窄缝内相对波高变化,并与已发表的数值与实验结果对比,验证了本模型的准确性。同时通过大量的数值计算,分析了箱体数量对窄缝内水体共振频率、共振波高以及对结构反射波高和透射波高的影响。  相似文献   

19.
Generation and Properties of Freak Waves in A Numerical Wave Tank   总被引:3,自引:3,他引:3  
Freak waves are generated based on the mechanism of wave focusing in a 2D numerical wave tank. To set up the nonlinear numerical wave tank, the Boundary Element Method is used to solve potential flow equations incorporated with fully nonlinear free surface boundary conditions. The nonlinear properties of freak waves, such as high frequency components and wave profile asymmetry, are discussed. The kinematic data, which can be useful for the evaluation of the wave forces exerted on structures to avoid underestimation of linear predictions, are obtained, and discussed, from the simulated results of freak waves.  相似文献   

20.
A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Eulerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The boundary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropr...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号