首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
The importance of dissolved organic phosphorus(DOP) as a potential nutrient source for primary producers in marine systems has been recognized for up to eight decades, but currently, the understanding of the biogeochemistry of DOP is in its infancy. In the present study, monthly data between 2000 and 2014 were used to analyze the temporal and spatial distributions of DOP in the Mir Bay, the northern South China Sea. The DOP residence time(T_(DOP)) was also investigated using a simple regression analysis in combination with chlorophyll a(Chl a) measurements while excess DOP(ΔDOP), produced by the biogeochemical processes of autotrophic production and heterotrophic removal, was determined using a two-component mixing mass-balance model in combination with salinity measurements. The results showed that the DOP concentration was(0.017±0.010) mg/L higher in the surface-water compared with the bottom-water and higher in the inner Tolo Harbour and waters adjacent to Shatoujiao compared with the main zone of the bay. Although seasonal changes and annual variability in the DOP were small, the surface DOP concentration was higher in the wet season(April–September)than in the dry season(October–March) due to the impacts of seaward discharges and atmospheric deposition into the bay. Measurement and regression results showed that the DOP release rate from phytoplankton production was about 1.83(gP)/(gChl a) and the T_(DOP) was about 7 d, which implied that the DOP cycle in the bay was rapid. The ΔDOP was calculated from the model to be about 0.000 mg/L in the main zone of the bay and about 0.002 mg/L in the inner Tolo Harbour and waters adjacent to Shaotoujiao, suggesting that the autotrophic production of DOP was almost balanced by the heterotrophic removal in the main zone of the bay and dominated in the inner Tolo Harbour and waters adjacent to Shaotoujiao. In conclusion, the Mirs Bay is very productive and fairly heterotrophic.  相似文献   

2.
The East China Sea is a productive marginal sea with a wide continental shelf and plays an important role in absorbing atmospheric carbon dioxide and transferring terrigenous organic matter to the open ocean. To investigate the roles of heterotrophic bacteria in the biogeochemical dynamics in the East China Sea, bacterial biomasses(BB) and productions(BP) were measured in four cruises. The spatial distributions of the BB and the BP were highly season-dependent. Affected by the Changjiang River discharge, the BB and the BP were high in shelf waters(bottom depth not deeper than 50 m) and generally decreased offshore in August 2009. In December 2009 to January 2010, and November to December 2010, the BB and the BP were high in waters with medium bottom depth. The onshore-offshore decreasing trends of the BB and the BP also existed in May–June 2011, when the BB was significantly higher than in other cruises in shelf break waters(bottom depth deeper than 50 m but not deeper than 200 m). The results of generalized additive models(GAM) suggest that the BB increased with the temperature at a range of 8-20°C, increased with the chlorophyll concentration at a range of 0.02–3.00 mg/m3 and then declining, and decreased with the salinity from 28 to 35. The relationship between the temperature and the log-transformed bacterial specific growth rate(SGR) was linear. The estimated temperature coefficient(Q10) of the SGR was similar with that of the phytoplankton growth. The SGR also increased with the chlorophyll concentration. The ratio of the bacterial to phytoplankton production ranged from less than 0.01 to 0.40, being significantly higher in November–December 2010 than in May–June 2011. Calculated from the bacterial production and growth efficiency, the bacterial respiration consumed, on average, 59%, 72% and 23% of the primary production in August 2009, November–December 2010, and May–June 2011, respectively.  相似文献   

3.
The surface and bottom waters samples were collected from six locations in Xiamen western sea. The quantified estimation of bacterial production (3H-thymidine method) and observation of bacterial heterotrophic activity (14C-glucose method) have been made in order to have a better understanding of the role of marine bacteria and their activities. The results showed that the mean value of bacterial heterotrophic activity was 9×108 cells/(L.h) in the surface waters and 2.6×108 cells/(L.h) in the bottom waters. The mean value of bacterial production was 38×108 cells/(L.h) in the surface waters and 7.1×108 cells/(L.h) in the bottom waters. The relationship between bacterial production, heterotrophic activity, POC and DOC measured during this survey were discussed. The good understanding of the relationship between bacteria activity and total coliform was addressed.  相似文献   

4.
Seasonal and inter-annual variability of hydrological parameters and its impact on chlorophyll distribution was studied from January 2009 to December 2011 at four coastal stations along the southwest Bay of Bengal. Statistical analysis(principal component analysis(PCA), two-way analysis of variance(ANOVA) and correlation analysis)showed the significant impact of hydrological parameters on chlorophyll distribution in the study area. The ranges of different parameters recorded were 23.8–33.8°C(SST), 4.00–36.00(salinity), 7.0–9.2(p H), 4.41–8.32 mg/L(dissolved oxygen), 0.04–2.45 μmol/L(nitrite), 0.33–16.10 μmol/L(nitrate), 0.02–2.51 μmol/L(ammonia),0.04–3.32 μmol/L(inorganic phosphate), 10.09–85.28 μmol/L(reactive silicate) and 0.04–13.8 μg/L(chlorophyll).PCA analysis carried out for different seasons found variations in the relationship between physico-chemical parameters and chlorophyll in which nitrate and chlorophyll were positively loaded at PC1(principal component1) during spring inter-monsoon and at PC2(principal component 2) during other seasons. Likewise correlation analysis also showed significant positive relationship between chlorophyll and nutrients especially with nitrate(r=0.734). Distribution of hydrobiological parameters between stations and distances was significantly varying as evidenced from the ANOVA results. The study found that the spatial and temporal distribution of chlorophyll was highly dependent on the availability of nutrients especially, nitrate in the southwest Bay of Bengal coastal waters.  相似文献   

5.
The relationship between spatial patterns of macrobenthos community characteristics and environmental conditions(salinity, temperature, dissolved oxygen, organic matter content, sand, silt and clay) was investigated throughout the Gorgan Bay in June 2010. Principal components analysis(PCA) based on environmental data separated eastern and western stations. The maximum(4500 ind./m2) and minimum(411 ind./m2) densities were observed at Stas 1 and 6, respectively. Polychaeta was the major group and Streblospio gynobranchiata was dominant species in the bay. According to Distance Based Linear Models results, macrofaunal total density was correlated with silt percentage and salinity and these two factors explaining 64% of the variability while macrofaunal community structure just correlated with salinity(22% total variation). In general, western part of the bay showed the highest number of species and biodiversity while, the highest density was found at Sta. 1 and in the middle part of the bay. Furthermore, relationship between diversity indices and macrobenthic species with measured factors is also discussed. Our results confirm the effect of salinity as an important factor on distribution of macrobenthic fauna in south Caspian brackish waters.  相似文献   

6.
The neon flying squid Ommastrephes bartramii is an economically important species in the Northwest Pacific Ocean. The life cycle of O. bartramii is highly susceptible to climatic and oceanic factors. In this study, we have examined the impacts of climate variability and local biophysical environments on the interannual variability of the abundance of the western winter-spring cohort of O. bartramii over the period of 1995–2011. The results showed that the squid had experienced alternant positive and negative Pacific Decadal Oscillation(PDO) over the past 17 years during which five El Ni?o and eight La Ni?a events occurred. The catch per unit effort(CPUE) was positively correlated with the PDO index(PDOI) at a one-year time lag. An abnormally warm temperature during the La Ni?a years over the positive PDO phase provided favorable oceanographic conditions for the habitats of O.bartramii, whereas a lower temperature on the fishing ground during the El Ni?o years over the negative PDO phase generally corresponded to a low CPUE. The same correlation was also found between CPUE and Chl a concentration anomaly. A possible explanation was proposed that the CPUE was likely related to the climateinduced variability of the large-scale circulation in the Northwest Pacific Ocean: high squid abundance often occurred in a year with a significant northward meander of the Kuroshio Current. The Kuroshio Current advected the warmer and food-rich waters into the fishing ground, and multiple meso-scale eddies arising from current instability enhanced the food retention on the fishing ground, all of which were favorable for the life stage development of the western squid stocks. Our results help better understand the potential process that the climatic and oceanographic factors affect the abundance of the winter-spring cohort of O. bartramii in the Northwest Pacific Ocean.  相似文献   

7.
The results of field observation carried out in May 2003 were used to examine pH and total alkalinity behaviors in the Changjiang Estuary. It was showed that pH and total alkalinity took on clear spatial variations in values with the minima in the low salinity region. Like salinity, transect distributions of pH and total alkalinity (TA) in a downriver direction had a sharp gradient each. These gradients appeared in such a sequence that the TA gradient was earlier than salinity and pH gradients, and the salinity gradient was earlier than the pH gradient. These distribution characteristics seemed to be strongly influenced by the mixing process of freshwater and seawater, for both pH and total alkalinity had significant linear relationships with salinity and temperature. For pH, phytoplankton activities also had a significant impact upon its spatial distribution. During a period of 48 h, pH and total alkalinity changed within wide ranges for every layer of the two anchor stations, namely, Stas 13 and 20, which were located at the mixed water mass and seawater mass, respectively. For both Stas 13 and 20, pH and TA fluctuation of every layer could be very wide during a 4 h period. As a whole, the data of the two anchor stations showed that neither variations in salinity and temperature nor phytoplankton activities were the main factors strongly influencing the total alkalinity temporal variability on a small time scale. The data of Sta. 20 implied that both salinity variation and phytoplankton activities had a significant influence on pH temporal variability, but the same conclusion could not be drawn from the data of Sta. 13.  相似文献   

8.
Vertical variability in the bio-optical properties of seawater in the northern South China Sea(NSCS) including inherent optical properties(IOPs) and chlorophyll a concentration(Chl) were studied on the basis of in situ data collected in summer 2008 using an absorption/attenuation spectrophotometer. An empirical model was developed to estimate Chl profiles based on the absorption line height at long wavelengths, with a relative root mean square error of 37.03%. Bio-optical properties exhibited large horizontal and vertical spatial variability. As influenced by coastal upwelling and the Zhujiang River(Pearl River) discharge, both IOPs and Chl exhibited high values in the surface waters of the inner shelf, which tended to decrease with distance offshore. Subsurface maximum layers of IOPs and Chl were observed in the middle and outer shelf regions, along with significantly higher values of attenuation coefficients beneath this layer that rapidly increased towards the bottom. In the open ocean, both IOPs and Chl exhibited consistent variability, with the subsurface maximum layer typically located at34–84 m. Phytoplankton were found to be one of the major components in determining the vertical variability of bio-optical properties, with their vertical dynamics influenced by both physical forcing and light attenuation effects. The depth of the subsurface maximum layer was found to be closely related to the fluctuation of the oceanic thermocline and the depth of the euphotic zone, which also affected the total integrated biomass of the upper ocean. Typically high values of attenuation coefficients observed in the bottom waters of the continental shelf reflected the transport of particulate matter over the bottom boundary layer. Our results reveal large spatial differences in bio-optical profiles in response to complex marine ecodynamics in the NSCS. From the perspective of marine research, high-resolution optical measurements are clearly advantageous over conventional bottle sampling.  相似文献   

9.
Vast declines in Zostera marina seagrass beds demand effective methods of rehabilitation. In this study, we developed a practical method by reducing salinity to induce seed germination followed with recovering salinity to facilitate seedling production of Z. marina. The results showed that Z. marina seeds collected from natural seawater(salinity 30) were induced to germinate at reduced salinities. Percent germination(GR) was higher and mean-time-to-germinate(MTG) was shorter at lower salinities. The highest GR and shortest MTG occurred at salinity 0(deionized freshwater). After germination in freshwater, seeds could develop into seedlings at salinities5–30 and continue the growth. Viability or development of germinated seeds was not significantly different during the 40 d of post-germination incubation at salinities 5–15 after 1–20 d of germination in freshwater. However,during the process of translating germinated seeds from salinity 0 and 5 to salinity 30, reducing the gradients of post-germination acclimation facilitated more seeds forming seedlings in less time. On average, after 60 d of static incubation, including 20 d in freshwater for germination followed with immediate shift to salinity 5 and increasing to salinity 30 at increment of 5 every two days until cultivation at constant salinity 30, 33% of Z. marina seeds produced healthy seedlings. The results indicate that the salinity-manipulation based method of artificial germination and seedling production is practical and effective in supporting rehabilitation of Z. marina bed.  相似文献   

10.
In the past nearly two decades, the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations, providing opportunities to extend our knowledge on the variability and effects of ocean salinity. In this study, we utilize the Argo data during 2004–2017, together with the satellite observations and a newly released version of ECCO ocean reanalysis, to explore the decadal salinity variability in the Southeast Indian Ocean(SEIO) and its impacts on the regional sea level changes. Both the observations and ECCO reanalysis show that during the Argo era, sea level in the SEIO and the tropical western Pacific experienced a rapid rise in 2005–2013 and a subsequent decline in 2013–2017. Such a decadal phase reversal in sea level could be explained, to a large extent, by the steric sea level variability in the upper 300 m. Argo data further show that, in the SEIO, both the temperature and salinity changes have significant positive contributions to the decadal sea level variations. This is different from much of the Indo-Pacific region, where the halosteric component often has minor or negative contributions to the regional sea level pattern on decadal timescale. The salinity budget analyses based on the ECCO reanalysis indicate that the decadal salinity change in the upper 300 m of SEIO is mainly caused by the horizontal ocean advection. More detailed decomposition reveals that in the SEIO, there exists a strong meridional salinity front between the tropical low-salinity and subtropical high salinity waters. The meridional component of decadal circulation changes will induce strong cross-front salinity exchange and thus the significant regional salinity variations.  相似文献   

11.
High-quality hydrographic sections occupied during the World Ocean Circulation Experiment (WOCE) have allowed the first estimates to be made of property changes in the deep ocean on a decadal time-scale. The magnitude of the property variability on deep isothermal surfaces (below about 2–3°C) was found to be comparable with the magnitude of possible systematic errors in the data (except for a few regions where formation of deep and bottom waters occurs). However, the problem of systematic errors in hydrographic data was only marginally addressed in the literature.We conducted an analysis of property offsets between the cruises of an expansive global hydrographic dataset, including 1314 cruises. Because of significant differences in quality, a distinction is made between the high-quality modern data (1970–1998) and less accurate historical data (since 1920s). Inter-cruise offsets are determined on isothermal surfaces for salinity, oxygen, silicate, nitrate and phosphate within crossover areas. Offsets are decomposed into a systematic part (the difference of respective systematic errors (biases)) and a non-systematic part (a combined effect of temporal and spatial variability). For the reference subset of N=384 high-quality cruises with M=2201 crossover areas (for salinity) a system of M algebraic equations in N unknown cruise biases is obtained and solved by least squares.Accounting for biases allows a drastic reduction of inter-cruise offsets (a factor of 2–4 depending on property and dataset considered), bringing data from different cruises to agreement within WOCE quality requirements. For a composite WOCE/non-WOCE high-quality dataset calculated root-mean-square inter-cruise offsets before and after adjustment (in parentheses) are 3.2*10−3 (1.34*10−3) for salinity, 2.498 (0.782) μmol/kg for oxygen, 2.4 (0.95) μmol/kg for silicate, 0.55 (0.26) μmol/kg for nitrate and 0.045 (0.018) μmol/kg for phosphate. Our results demonstrate, that quality requirements for the WOCE Hydrographic Programme have been obviously fulfilled.Biases for historical cruises are calculated relative to the corrected reference data and are found to be on average a factor of 3–6 larger than the modern cruise biases. Calculated property offsets and biases for both high-quality and historical data are found to be in a good agreement with independent offset estimates. Though small differences of IAPSO Standard Seawater salinity from label salinity are reported in the literature, they can not explain observed inter-cruise offsets, and operator/salinometer related errors seem to be the main cause for inter-cruise differences.Systematic biases can provide an explanation for apparent changes in deep water temperature–parameter relationships as an alternative to natural variability. For instance, we argue that apparent variability of the deep water salinity in the Argentine Basin during 1980s as reported by Coles, McCartney, and Olson (J. Geophys. Res. 101, 1996, 8957–8970) is mostly the result of systematic errors in the data used for their analysis. Removing inconsistencies in a composite data set is also important for producing consistent climatological property fields even in the data abundant regions.  相似文献   

12.
This study used the dilution method to examine growth and grazing rates of heterotrophic bacteria and an autotrophic picoplankton, Synechococcus spp., from 1 to 11 July 2007 in the East China Sea. The main influence of oceanographic conditions in this aquatic system was the introduction of fresh, high-nutrient water from Changjiang River and the extremely nutrient-poor, high-salinity waters of Kuroshio Water. In these experiments, deviation from linearity in the relationship between dilution factor and net growth rate was significant in a large number of cases. Growth rates for heterotrophic bacteria ranged from 0.024 to 0.24, and for Synechococcus spp. from 0.03 to 0.21 h−1. Grazing rates ranged from 0.02 to 0.19 and 0.01 to 0.13 h−1, respectively. The spatial variations of Synechococcus spp. production to the primary production ratio (SP/PP) were low (<5%) in high Chl a environments and increased exponentially in low Chl a environments, indicating that Synechococcus spp. contributes to a large extent to the photosynthetic biomass in the open sea, especially in the more oligotrophic Kuroshio Water. Furthermore, the results of our dilution experiments suggest that nanoflagellates largely depend on heterotrophic bacteria as an important energy source. On average, heterotrophic bacteria contributes to 76 and 59% of carbon consumed by nanoflagellates within the plume (salinity <31) and outside of it (salinity >31).  相似文献   

13.
Intermediate Waters in the East/Japan Sea   总被引:4,自引:0,他引:4  
Properties of the intermediate layer in the East/Japan Sea are examined by using CREAMS data taken mainly in summer of 1995. Vertical profiles of potential temperature, salinity and dissolved oxygen and relationships between these physical and chemical properties show that the dissolved oxygen concentration of 250 μmol/l, roughly corresponding to 0.6°C at the depth of about 400 db, makes a boundary between intermediate and deep waters. Water colder than 0.6°C has a very stable relationship between potential temperature and salinity while salinity of the water warmer than 0.6°C is lower in the western Japan Basin than that in the eastern Japan Basin. The low salinity water with high oxygen corresponds to the East Sea Intermediate Water (ESIW; <34.06 psu, >250 μmol/l and >1.0°C) which was previously identified by Kim and Chung (1984) and the high salinity water with high oxygen found in eastern Japan Basin is named as the High Salinity Intermediate Water (HSIW; >34.07 psu, >250 μmol/l and >0.6°C). Spatial distribution of salinity and acceleration potential on the surface of σϑ = 27.2 kg/m3 shows that the ESIW prevailing in the western Japan Basin is transported eastward by a zonal flow along the polar front near 40°N and a cyclonic gyre in the eastern Japan Basin is closely related to the HSIW. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Physiological tolerances limit the distribution of marine species, with geographical ranges being set by environmental factors, such as temperature and salinity, which affect the rates of vital processes and survival of marine ectotherms. The physiological tolerances of the non-native marine amphipod Caprella mutica were investigated in laboratory experiments. Adult C. mutica were collected from a fish farm on the west coast of Scotland and exposed to a range of temperatures and salinities for 48 h. C. mutica were tolerant of a broad range of temperature and salinity conditions, with 100% mortality at 30 degrees C (48 h LT50, 28.3+/-0.4 degrees C), and salinities lower than 16 (48 h LC50, 18.7+/-0.2). Although lethargic at low temperatures (2 degrees C), no mortality was observed, and the species is known to survive at temperatures as low as -1.8 degrees C. The upper LC(50) was greater than the highest salinity tested (40), thus it is unlikely that salinity will limit the distribution of C. mutica in open coastal waters. However, the species will be excluded from brackish water environments such as the heads of sea lochs or estuaries. The physiological tolerances of C. mutica are beyond the physical conditions experienced in its native or introduced range and are thus unlikely to be the primary factors limiting its present distribution and future spread.  相似文献   

15.
We consider the procedures of conversion of the conventional and out-of-system units of measurement of the amount and composition of matter used in oceanology to the International System of Units (SI). The coefficients of conversion are presented in the form of a table. We present the data on the units of measurement of mineralization (scales of salinity) of seawater for the oceanic range of its variability, freshened waters of internal seas, and brines. The contemporary concept of salinity as a dimensionless quantity is discussed.Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 61–72, July–August, 2004.  相似文献   

16.
Year-long time-series of temperature, salinity and velocity from 12 locations throughout the Chukchi Sea from September 1990 to October 1991 document physical transformations and significant seasonal changes in the throughflow from the Pacific to the Arctic Ocean for one year. In most of the Chukchi, the flow field responds rapidly to the local wind, with high spatial coherence over the basin scale—effectively the ocean takes on the lengthscales of the wind forcing. Although weekly transport variability is very large (ca. -2 to ), the mean flow is northwards, opposed by the mean wind (which is southward), but presumably forced by a sea-level slope between the Pacific and the Arctic, which these data suggest may have significant variability on long (order a year) timescales. The high flow variability yields a significant range of residence times for waters in the Chukchi (i.e. one to six months for half the transit) with the larger values applicable in winter.Temperature and salinity (TS) records show a strong annual cycle of freezing, salinization, freshening and warming, with sizable interannual variability. The largest seasonal variability is seen in the east, where warm, fresh waters escape from the buoyant, coastally trapped Alaskan Coastal Current into the interior Chukchi. In the west, the seasonally present Siberian Coastal Current provides a source of cold, fresh waters and a flow field less linked to the local wind. Cold, dense polynya waters are observed near Cape Lisburne and occasional upwelling events bring lower Arctic Ocean halocline waters to the head of Barrow Canyon. For about half the year, at least at depth, the entire Chukchi is condensed into a small region of TS-space at the freezing temperature, suggesting ventilation occurs to near-bottom, driven by cooling and brine rejection in autumn/winter and by storm-mixing all year.In 1990–1991, the ca. 0.8 Sv annual mean inflow through Bering Strait exits the Chukchi in four outflows—via Long Strait, Herald Valley, the Central Channel, and Barrow Canyon—each outflow being comparable (order 0.1–0.3 Sv) and showing significant changes in volume and water properties (and hence equilibrium depth in the Arctic Ocean) throughout the year. The clearest seasonal cycle in properties and flow is in Herald Valley, where the outflow is only weakly related to the local wind. In this one year, the outflows ventilate above and below (but not in) the Arctic halocline mode of 33.1 psu. A volumetric comparison with Bering Strait indicates significant cooling during transit through the Chukchi, but remarkably little change in salinity, at least in the denser waters. This suggests that, with the exception of (in this year small) polynya events, the salinity cycle in the Chukchi can be considered as being set by the input through Bering Strait and thus, since density is dominated by salinity at these temperatures, Bering Strait salinities are a reasonable predictor of ventilation of the Arctic Ocean.  相似文献   

17.
文章根据2016年5月(春季)和8月(夏季)温州沿岸海域浮游动物和环境因子的调查资料,对浮游动物的种类组成、生态类群、优势种、丰度和生物量进行研究,并通过典范对应分析探索环境因子对浮游动物群落特征的影响。研究结果表明:春、夏季共鉴定到浮游动物117种和浮游幼虫20类,大多数种类属于暖水性近海类群;春季的优势种包括中华哲水蚤、大西洋五角水母和百陶箭虫,夏季的优势种包括拟细浅室水母、齿形海萤、肥胖箭虫和精致真刺水蚤等;浮游动物的丰度和生物量春季高于夏季,水平分布大致为近岸低、远岸高;浮游动物样品的季节性差异与表层水温和盐度有较大关系,而影响浮游动物群落结构空间差异的环境因子春季为盐度、活性磷酸盐、硝酸盐和氨氮,夏季为盐度、总氮、总磷和叶绿素a。  相似文献   

18.
调水调沙后黄河口邻近海域浮游植物群落响应特征   总被引:15,自引:2,他引:13  
为研究黄河调水调沙对邻近海域浮游植物群落的影响,2013年7月在黄河第16次调水调沙事件后,开展了水文、化学与生物综合调查。研究结果表明,黄河口邻近海域温度、营养盐浓度整体呈现由河口向离岸区域逐渐递减的分布趋势,盐度呈现由河口向离岸区域逐渐递增的分布趋势,显示了黄河水输入的影响程度。叶绿素a与营养盐浓度在空间分布上呈现出较好的对应关系,在黄河口偏渤海湾侧明显高于偏莱州湾侧,且近河口区明显高于离岸区。营养盐结构分析表明,黄河口邻近海域普遍存在磷酸盐(DIP)的绝对和相对限制;但黄河水沙输入在局部站位缓解了硅(DSi)限制。浮游植物群落结构的空间变化显著受到盐度的影响,在受黄河水输入影响显著的C、D、E断面,蓝藻与绿藻的生物量比例明显增高;影响相对较弱的断面则以硅藻、甲藻为主。浮游植物群落结构与环境因子的主成分分析结果表明,DSi、DIP和盐度是影响该海域浮游植物空间变化的关键环境因子。甲藻、蓝藻与绿藻群落受盐度变化的影响程度明显大于硅藻群落;但甲藻群落对营养盐结构的敏感性低于硅藻、蓝藻和绿藻群落。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号