首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From late 1995 through early 2001, three major interannual climate events occurred in the tropical Pacific; the 1995–97 La Niña (LN), 1997–98 El Niño (EN), and 1998–2001 LN. We analyze atmospheric and upper oceanic anomalies in the northeast Pacific (NEP) during these events, and compare them to anomalies both elsewhere in the north and tropical Pacific, and to typical EN and LN anomaly patterns. The atmospheric and oceanic anomalies varied strongly on intraseasonal and interannual scales. During the 1995–97 LN and 1997–98 EN, the Northeast Pacific was dominated by negative SLP and cyclonic wind anomalies, and by upper ocean temperature and sea surface height (SSH) anomalies. The latter were positive along the North American west coast and in the NEP thermal anomaly pool (between Hawaii, Vancouver Island, and Baja California), and negative in the central north Pacific. This atmospheric/oceanic anomaly pattern is typical of EN. An eastward shift in the atmospheric teleconnection from east Asia created EN-like anomalies in the NEP during the 1995–97 LN, well before the 1997–98 EN had begun. The persistence of negative sea-level pressure (SLP) and cyclonic wind anomalies in the NEP during the 1997–98 EN intensified pre-existing upper oceanic anomalies. Atmospheric anomalies were shifted eastward during late 1996–early 1998, leading to a similar onshore shift of oceanic anomalies. This produced exceptionally strong positive upper ocean temperature and SSH anomalies along the west coast during the 1997–98 EN, and explains the unusual coastal occurrences of several species of large pelagic warm-water fishes. The growth and eastward shift of these pre-existing anomalies does not appear to have been linked to tropical Pacific EN anomalies until late 1997, when a clear atmospheric teleconnection between the two regions developed. Prior to this, remote atmospheric impacts on the NEP were primarily from east Asia. As the 1998–2001 LN developed, NEP anomalies began reversing toward the typical LN pattern. This led to predominantly negative SLP and cyclonic wind anomalies in the NEP, and upper ocean temperature and SSH anomalies that were mainly negative along the west coast and positive in the central north Pacific. The persistence of these anomalies into mid-2001, and a number of concurrent biological changes in the NEP, suggest that a decadal climate shift may have occurred in late 1998.During 1995–2001, NEP oceanic anomalies tracked the overlying atmospheric anomalies, as indicated by the maintenance of a characteristic spatial relationship between these anomalies. In particular, wind stress curl and SSH anomalies in the NEP maintained an inverse relationship that strengthened and shifted eastward toward the west coast during late 1996–early 1998. This consistent relationship indicates that anomalous Ekman transport driven by regional atmospheric forcing was an important contributor to temperature and SSH anomalies in the NEP and CCS during the 1997–98 EN. Other studies have shown that coastal propagations originating from the tropical Pacific also may have contributed to coastal NEP anomalies during this EN. Our results indicate that at least some of this coastal anomaly signal may have been generated by regional atmospheric forcing within the NEP.  相似文献   

2.
It is generally accepted that a climate shift occurred about 1977 that affected the dynamics of North Pacific marine ecosystems. Agreement on the possibility of further climate shifts in 1989 and the late 1990s is yet to be achieved. However, there have been changes in the dynamics of key commercial fishes that indicate changes in their environment occurred in the early 1990s, and possibly around 1998. One method of measuring climate change is to observe the dynamics of species that could be affected.Several studies have described decadal-scale changes in North Pacific climate–ocean conditions. Generally, these studies focus on a single index. Using principal components analysis, we use a composite index based on three aspects of climate ocean conditions: the Aleutian Low Pressure Index, the Pacific Atmospheric Circulation Index and the Pacific Interdecadal Oscillation Index. We link this composite index (Atmospheric Forcing Index) to decadal-scale changes in British Columbia salmon and other fish populations. Around 1989 there was a change from intense Aleutian Lows (above average south-westerly and westerly circulation patterns and warming of coastal sea surface temperatures) to average Aleutian Lows (less frequent south-westerly and westerly circulation and slightly cooler coastal sea surface temperatures in winter). These climate–ocean changes were associated with changes in the abundance and ocean survival of salmon (Oncorhynchus spp.), distribution and spawning behaviour of hake (Merluccius productus) and sardines (Sardinops sagax) and in recruitment patterns of several groundfish species.  相似文献   

3.
The interdecadal modulation of interannual variability of the atmosphere and ocean is examined over the North Pacific by using Wavelet Transform combined with Empirical Orthogonal Function (EOF) or Singular Value Decomposition (SVD) analysis. For the period of record 1899–1997, the interannual variability of the wintertime Aleutian Low, identified by either the North Pacific Index or the leading eigenvector (EOF-1) of North Pacific sea level pressure (SLP), exhibits an interdecadal modulation. Interannual variance in the strength of the Aleutian Low was relatively large from the mid-1920s to mid-1940s and in the mid-1980s, but relatively small in the periods from 1899 to the mid-1920s and from the mid-1940s to the mid-1970s. The periods of high (low) interannual variability roughly coincide with pentadecadal regimes having a time averaged relatively intense (weak) Aleutian Low. Consistent with this SLP variability the interannual variance in the zonal wind stress is strengthened in the central North Pacific after the 1970s. The SLP EOF-2, which is related to the North Pacific Oscillation, exhibited a strengthening trend from the beginning of this century to the mid-1960s. After the 1970s, the interannual variance of SLP EOF-2 is generally smaller than that in the period from 1930 to 1970. Similar interdecadal changes in interannual variance are found in expansion coefficients for the first two EOFs of the Pacific sector 500 hPa height field for the period 1946–1993. EOF-1 of Pacific sector 500 hPa corresponds to the Pacific/North American (PNA) teleconnection pattern, while EOF-2 is related to the Western Pacific (WP) pattern. The relative influence of the atmospheric PNA and WP interannual variability on North Pacific SSTs appears to have varied at pentadecadal time scales. Results from an SVD analysis of winter season (December–February) 500 hPa and North Pacific spring season (March–May) SST fields demonstrate that the PNA-related SST anomaly exhibited larger interannual variance after the 1970s, whereas the interannual variance of the WP related SST anomaly is larger before the 1970s. Correlations between the coastal North Pacific SST records and gridded atmospheric field data also change on interdecadal time scales. Our results suggest that the SST records from both the northwest and northeast Pacific coasts were more closely coupled with the PNA teleconnection pattern during the periods of 1925–1947 and 1977–1997 than in the regime from 1948 to 1976. Teleconnections between ENSO and preferred patterns of atmospheric variability over the North Pacific also appear to vary on interdecadal time scales. However, these variations do not reflect a unique regime-dependent influence. Our results indicate that ENSO is primarily related to the PNA (WP) pattern in the first (last) half of the present century. Correlation coefficients between indices for ENSO and PNA-like atmospheric variability are remarkably weak in the period from 1948 to 1976.  相似文献   

4.
Climate fluctuations, or modes, are largely manifested in terms of coherent, large-scale (3000 km) patterns of anomalous sea-level pressure or geopotential height at various altitudes. It is worthwhile to investigate how these modes relate to the specific processes associated with atmospheric forcing of the ocean, in this case for the southeast Bering Sea. This approach has been termed “downscaling.” Climate-scale patterns in this study are derived from covariance-based empirical orthogonal functions (EOFs) of low-pass filtered (10-day cut-off) 700-mb geopotential height fields for 1958–1999. By design, this EOF analysis elicits sets of patterns for characterizing the variability in the large-scale atmospheric circulation centered on the Bering Sea. Four modes are considered for each of three periods, January–March, April–May, and June–July. These modes are compared with atmospheric circulation patterns formed by compositing 700-mb height anomalies based on the individual elements constituting the local forcing, i.e. the surface heat and momentum fluxes.In general, different aspects of local forcing are associated with different climate modes. In winter, the modes dominating the forcing of sea-ice include considerable interannual variability, but no discernible long-term trends. A prominent shift did occur around 1977 in the sign of a winter mode resembling the Pacific North American pattern; this mode is most significantly related to the local wind-stress curl. In spring, forcing of currents and stratification are related to the two leading climate modes, one resembling the North Pacific (NP) pattern and one reflecting the strength of the Aleutian low; both exhibit long-term trends with implications for the Bering Sea. In summer, an NP-like mode and a mode featuring a center over the Bering Sea include long-term trends with impacts on surface heating and wind mixing, respectively. Rare events, such as a persistent period of strong high pressure or a major storm, also can dominate the summer Bering Sea forcing in particular years.  相似文献   

5.
利用SODA海洋同化资料和NCEP再分析大气资料,分析了热带太平洋次表层海温异常(subsurfaceoceantemperatureanomaly,SOTA)与厄尔尼诺与南方涛动(ElNi?o-SouthernOscillation,ENSO)循环的联系,及SOTA对大气环流的影响。回顾传统ENSO研究,指出存在的问题,提出了ENSO影响大气研究的新思路,得到以下结果:(1)以SOTA为基本资料的研究发现, ENSO事件有两个模态,主要出现在冬季的第一模态对冬季及夏季亚洲-北太平洋-北美地区上空中高纬大气环流有重要影响,主要出现在夏季的第二模态对该地区上空夏季热带和副热带大气系统有重要作用。(2)ENSO事件通过与ENSO相联系的热带太平洋海面温度异常(ENSO-relatedseasurface temperatureanomaly,RSSTA)对大气的异常热通量输送,强迫Walker环流和Hadley环流变化,导致热带和北太平洋及周边地区上空大气环流异常,进而影响相关地区冬季和夏季的气候。(3)海表面温度异常(seasurfacetemperatureanomaly,SSTA)包含RSSTA和大气异常导致的海温变化(sea temperature anomaly caused by atmospheric anomaly, STA)两部分, RSSTA是ENSO事件过程中海洋内部热动力结构调整导致的海面温度变化,在海洋对大气的热输送过程中,它随ENSO事件演变不断更新;STA是大气受RSSTA海洋异常加热后导致的大气环流异常对海面温度的影响,在海洋浅表层STA对RSSTA有重大影响。本文最后讨论了ENSO事件期间热带海洋对大气热输送过程,指出ENSO事件通过海洋内部热动力结构调整产生RSSTA,它直接对大气异常加热,导致大气环流和气候异常,局地海气之间负反馈过程产生STA,反过来抑制RSSTA。结果还指出,人们常用的SSTA变率实际上主要由秋冬季节RSSTA主导,丢失了春夏季ENSO信息,用SSTA研究ENSO事件存在局限性,这也可能是ENSO事件春季预报障碍的原因之一。  相似文献   

6.
SouthernOscillationforcedbyheatsourceandtopographyQianWeihong,YouXintian(ReceivedJune5,1996,acceptedDecember9,1996)Abstract──...  相似文献   

7.
地形与热源强迫下的南方涛动   总被引:1,自引:0,他引:1  
用El Nino和La Nina位相时的海温异常和地形作为大气下垫面的异常强迫,引入IAP的两层原始方程大气环流模式,模拟出了南方涛动的典型结构.当去掉地形后,仅仅由海温异常也能模拟出太平洋东西部的气压异常振荡,但太平洋东部振荡中心的位置并不与观测的一致.由此可见,观测到的南方涛动是在实际地形下对全球海温异常的响应.  相似文献   

8.
利用一个较高分辨率的全球海洋环流模式在COADS 1945~1993年逐月平均资料的强迫下对海温和环流场进行了模拟试验,研究了全球热带海洋(主要是热带太平洋)海温和环流场的年际变化特征及模式ENSO冷暖事件演变的控制机理.结果表明,模式成功地再现了和观测一致的海温和环流的年际变化以及ENSO演变特征.其中热带印度洋年际SST变率的主要模态表现为与ENSO相联系的海盆尺度的一致性增暖或变冷现象,次级模态为热带印度洋偶极子模态;热带大西洋的SST年际变率表现为类ENSO的年际振荡现象.在热带太平洋,SST年际变化主要表现为ENSO型,环流的年际变率表现为与ENSO相对应的热带海洋质量循环圈的年际异常.对应于暖(冷)事件,前期赤道海洋垂直环流圈显示出减弱(增强)的特征.其中南赤道流异常的位相较Nino3区海温总体要超前5个月左右的时间;赤道上翻流异常的位相在表层要超前4个月,并随时间由上至下扩展;赤道潜流的异常则显示出东传特征,其中最早的较为显著的异常发生ENSO成熟前3个月180°附近.在模式ENSO冷暖事件的演变过程中,次表层海温异常沿赤道的东传起了关键作用,模式的ENSO模态主要表现为"时滞振子"模态.  相似文献   

9.
ENSO variability and the eastern tropical Pacific: A review   总被引:3,自引:0,他引:3  
El Niño-Southern Oscillation (ENSO) encompasses variability in both the eastern and western tropical Pacific. During the warm phase of ENSO, the eastern tropical Pacific is characterized by equatorial positive sea surface temperature (SST) and negative sea level pressure (SLP) anomalies, while the western tropical Pacific is marked by off-equatorial negative SST and positive SLP anomalies. Corresponding to this distribution are equatorial westerly wind anomalies in the central Pacific and equatorial easterly wind anomalies in the far western Pacific. Occurrence of ENSO has been explained as either a self-sustained, naturally oscillatory mode of the coupled ocean–atmosphere system or a stable mode triggered by stochastic forcing. Whatever the case, ENSO involves the positive ocean–atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four requisite negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance being time-dependent.ENSO variability is most pronounced along the equator and the coast of Ecuador and Peru. However, the eastern tropical Pacific also includes a warm pool north of the equator where important variability occurs. Seasonally, ocean advection seems to play an important role for SST variations of the eastern Pacific warm pool. Interannual variability in the eastern Pacific warm pool may be largely due to a direct oceanic connection with the ENSO variability at the equator. Variations in temperature, stratification, insolation, and productivity associated with ENSO have implications for phytoplankton productivity and for fish, birds, and other organisms in the region. Long-term changes in ENSO variability may be occurring and are briefly discussed. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.  相似文献   

10.
热带太平洋海温异常对北极海冰的可能影响   总被引:1,自引:1,他引:0  
本文利用1950-2015年间Hadley环流中心海冰和海温资料及NCEP/NCAR再分析资料,研究了热带太平洋海温异常对北极海冰的可能影响,并从大气环流和净表面热通量两个角度探讨了可能的物理机制。结果表明,在ENSO事件发展年的夏、秋季节,EP型与CP型El Niño事件与北极海冰异常的联系无明显信号。而La Niña事件期间北极海冰出现显著异常,并且EP型与CP型La Niña之间存在明显差异。EP型La Niña发生时,北极地区巴伦支海、喀拉海关键区海冰异常减少,CP型La Niña事件则对应着东西伯利亚海、楚科奇海地区海冰异常增加。在EP型La Niña发展年的夏、秋季节,热带太平洋海温异常通过遥相关波列,使得巴伦支海、喀拉海海平面气压为负异常并与中纬度气压正异常共同构成类似AO正位相的结构,形成的风场异常有利于北大西洋暖水的输入,同时造成暖平流,偏高的水汽含量进一步加强了净表面热通量收入,使得巴伦支海、喀拉海海冰异常减少。而在CP型La Niña发展年的夏季,东西伯利亚海、楚科奇海关键区受其东侧气旋式环流的影响,以异常北风分量占主导,将海冰从极点附近由北向南输送到关键区,海冰异常增加,而净表面热通量的作用较小。  相似文献   

11.
A set of spatially nested circulation models is used to explore interannual change in the northeast Pacific (NEP) during 1997–2002, and remote vs. local influence of the 1997–1998 El Niño on this region. Our nested set is based on the primitive equations of motion, and includes a basin-scale model of the north Pacific at ∼40-km resolution (NPac), and a regional model of the Northeast Pacific at ∼10-km resolution. The NEP model spans an area from Baja California through the Bering Sea, from the coast to ∼2000-km offshore. In this context, “remote influence” refers to effects driven by changes in ocean velocity and temperature outside of the NEP domain; “local influence” refers to direct forcing by winds and runoff within the NEP domain. A base run of this model using hindcast winds and runoff for 1996–2002 replicates the dominant spatial modes of sea-surface height anomalies from satellite data, and coastal sea level from tide gauges. We have performed a series of sensitivity runs with the NEP model for 1997–1998, which analyze the response of coastal sea level to: (1) hindcast winds and coastal runoff, as compared to their monthly climatologies and (2) hindcast boundary conditions (from the NPac model), as compared to their monthly climatologies. Results indicate penetration of sea-surface height (SSH) from the basin-scale model into the NEP domain (e.g., remote influence), with propagation as coastal trapped waves from Baja up through Alaska. Most of the coastal sea-level anomaly off Alaska in El Niño years appears due to direct forcing by local winds and runoff (local influence), and such anomalies are much stronger than those produced off California. We quantify these effects as a function of distance along the coastline, and consider how they might impact the coastal ecosystems of the NEP.  相似文献   

12.
分析了1979—2018年两类厄尔尼诺事件期间月平均热带太平洋海面温度(sea surface temperature,SST)异常、对流降水异常、大气环流异常等特征,发现东部型、中部型厄尔尼诺期间海洋及大气加热场并不是赤道对称,赤道以南热源强度大于赤道以北。大气对热源的响应表现在:1)低层在大气热源西侧出现南、北半球热带相对应的气旋环流异常,但是赤道以南气旋的涡度大于赤道以北,且两类厄尔尼诺事件期间涡度中心的位置不同;到高层赤道中东太平洋呈现赤道对称的反气旋环流控制。2)低层热源的西侧出现西风异常,东侧为东风异常,西风异常的强度与范围明显大于东风异常,且东部型西风异常的强度大于中部型;而到高层,纬向风的风向和低层正好相反。3)低层东部型、中部型厄尔尼诺上升运动异常分别位于赤道中东太平洋和赤道中太平洋,下沉运动出现在热源东西两侧及赤道两侧5°N以北、5°S以南的热带地区;东部型到中层上升运动异常强度达到最大,而中部型到高层上升运动异常强度达到最大。4)低层东部型、中部型厄尔尼诺期间位势高度在中东太平洋为负异常,西太平洋为正异常;到高层,整个赤道中东太平洋地区均为位势高度正异常,并且在赤道两侧分别出现位势高度正异常中心,与反气旋环流涡度中心及下沉运动异常中心相对应。5)除西风异常范围大于东风异常,其他特征与赤道非对称热源GILL响应的理论计算模态基本一致。  相似文献   

13.
ENSO循环相联系的北太平洋低纬度异常西边界流   总被引:1,自引:1,他引:0  
用SODA海洋同化和NCEP大气再分析资料,分析了热带太平洋次表层海温异常主要模态与北太平洋低纬度西边界流海域上层海洋环流和亚洲-北太平洋地区大气垂直和水平流场变化之间的关系,得到以下结果:(1) 在热带太平洋海洋次表层ENSO事件具有两种模态,二者组合构成ENSO循环。第一模态为ENSO成熟期,主要出现在冬季,第二模态为ENSO过渡期,主要出现夏季。(2) ENSO循环对北太平洋低纬度西边界流区上层海洋环流有重要影响。在El Niño发展期或La Niña 衰退期,该区出现气旋性异常环流,北赤道流(NEC)加强,NEC分叉位置北移,棉兰老海流(MC)加大,菲律宾以东黑潮(KC)减小,北赤道逆流(NECC)最强。在El Niño(La Niña)成熟期,该区气旋性(反气旋性)异常环流达最强,NEC最强(最弱),NEC分叉位置最北(最南),MC最大(最小),KC最小(最大),NECC减弱(加强)。在El Niño衰退期或La Niña发展期与El Niño发展期相反,该区出现反气旋性异常环流,由此导致相应流系异常发生反位相变化。(3) ENSO循环对北太平洋低纬度西边界流海域上层海洋环流的影响是通过ENSO事件期间热带太平洋热力状况异常改变上空大气环流来实现的。ENSO事件首先造成热带太平洋海洋热力状况异常,导致其上空对流活动异常,后者直接或间接通过“大气桥”能量传输引起相关地区大气环流场的变化,致使海面风应力场异常,进而强迫上层海洋环流场的相应变化。文章最后还分析了ENSO事件期间菲律宾附近异常反气旋或异常气旋性风场的产生和持续原因,讨论了北太平洋低纬度西边界流海域海气相互作用在ENSO循环中的贡献。  相似文献   

14.
The leading modes of interannual and long-term variations in the stratospheric and tropospheric circulation and total ozone (TOMS data) and their relations to Northern Hemisphere sea surface temperature (SST) anomalies are investigated using the monthly mean NCEP/NCAR reanalysis data for the winter months of 1958–2003. Strong correlations are indicated between the interannual total ozone variations over Labrador and the North Atlantic and changes in the stratospheric polar vortex. The onset of major stratospheric warmings is connected not only with the strengthening of westerlies at the 500-hPa level in the midlatitude Atlantic, but also with the weakening of tropospheric winds over the north of eastern Siberia and strengthening over the Far East. In years with major stratospheric warmings, abnormally cold winters are observed in Eurasia, especially in eastern Siberia and northeastern China. The calculated simultaneous (with no time lags) correlations of the stratospheric circulation changes with El Niño/La Niña events give evidence of low correlations between the tropical Pacific SST anomalies and the stratospheric dynamics in the Arctic. However, there are high correlations of the extratropical Pacific and Atlantic SST anomalies with interannual tropospheric and stratospheric circulation variations, the stratospheric dynamics being more strongly connected with Pacific SST than with Atlantic SST anomalies. The interannual changes in tropospheric circulation are coupled to SST anomalies in both the Pacific and the Atlantic. Mechanisms of long-term changes in the interactive ocean-atmosphere-ozone layer system are discussed.  相似文献   

15.
How are large western hemisphere warm pools formed?   总被引:1,自引:0,他引:1  
During the boreal summer the Western Hemisphere warm pool (WHWP) stretches from the eastern North Pacific to the tropical North Atlantic and is a key feature of the climate of the Americas and Africa. In the summers following nine El Niño events during 1950–2000, there have been five instances of extraordinarily large warm pools averaging about twice the climatological annual size. These large warm pools have induced a strengthened divergent circulation aloft and have been associated with rainfall anomalies throughout the western hemisphere tropics and subtropics and with more frequent hurricanes. However, following four other El Niño events large warm pools did not develop, such that the mere existence of El Niño during the boreal winter does not provide the basis for predicting an anomalously large warm pool the following summer.In this paper, we find consistency with the hypothesis that large warm pools result from an anomalous divergent circulation forced by sea surface temperature (SST) anomalies in the Pacific, the so-called atmospheric bridge. We also find significant explanations for why large warm pools do not always develop. If the El Niño event ends early in the eastern Pacific, the Pacific warm anomaly lacks the persistence needed to force the atmospheric bridge and the Atlantic portion of the warm pool remains normal. If SST anomalies in the eastern Pacific do not last much beyond February of the following year, then the eastern North Pacific portion of the warm pool remains normal. The overall strength of the Pacific El Niño does not appear to be a critical factor. We also find that when conditions favor a developing atmospheric bridge and the winter atmosphere over the North Atlantic conforms to a negative North Atlantic Oscillation (NAO) pattern (as in 1957–58 and 1968–69), the forcing is reinforced and the warm pool is stronger. On the other hand, if a positive NAO pattern develops the warm pool may remain normal even if other circumstances favor the atmospheric bridge, as in 1991–92. Finally, we could find little evidence that interactions internal to the tropical Atlantic are likely to mitigate for or against the formation of the largest warm pools, although they may affect smaller warm pool fluctuations or the warm pool persistence.  相似文献   

16.
用美国马里兰大学提供的海洋同化(SODA)月平均资料,分析了赤道太平洋次表层海温异常年际和年代际变率的演化特征,讨论了它们对ENSO循环的影响.结果指出,赤道太平洋次表层海温异常年际和年代际变率具相似的ENSO模分布和演变过程,二者均以赤道西太平洋暖池次表层海温显著的异常中心与赤道东太平洋表层海温异常中心显著反号为主要分布特征,其演变过程通过赤道西太平洋暖池次表层海温异常中心沿海洋气候温跃层向东向上传播来完成.赤道西太平洋暖池次表层海温异常年际变率决定了ENSO循环,年代际变率对ENSO循环也有重要影响,其影响主要在中太平洋, 造成ENSO模的年代际变化.当年代际变率处于正常状态时,ENSO循环基本上是东部型冷暖事件之间的转换;当年际和年代际变率位相相同时,ENSO事件强度将会加强和持续,并出现中部型ENSO事件;当二者位相相反时, ENSO事件强度将会减弱.  相似文献   

17.
渤海海冰的年际和年代际变化特征与机理   总被引:1,自引:0,他引:1  
根据1951-2013年间的渤海冰情等级资料,利用最大熵谱分析、相关分析和合成分析等方法,研究了渤海冰情等级的年际和年代际变化特征,探讨了局地气候、大气环流、ENSO(El Nio-Southern Oscillation)和太平洋年代际振荡(PDO)对海冰的影响。结果表明,渤海海冰具有明显的年际和年代际变化特征,并在1972年前后发生了一次由重到轻的气候跃变,在跃变后冰情较跃变前平均降低了0.7级。相关分析与合成分析结果显示,渤海冰情的年际变化除受局地气候的影响外,还受西太平洋副热带高压(副高)、极涡和欧亚环流的共同调控,特别在1972年以后,秋季副高、冬季欧亚和亚洲纬向环流对渤海冰情的年际变化均有重要影响,可作为渤海海冰预报的重要因子,而春季PDO、ENSO、冬季副高及欧亚和亚洲经向环流则是渤海冰情年代际变化的影响因素。  相似文献   

18.
A comparative analysis was conducted on climate variability in four sub-arctic seas: the Sea of Okhotsk, the Bering Sea shelf, the Labrador Sea, and the Barents Sea. Based on data from the NCEP/NCAR reanalysis, the focus was on air–sea interactions, which influence ice cover, ocean currents, mixing, and stratification on sub-seasonal to decadal time scales. The seasonal cycles of the area-weighted averages of sea-level pressure (SLP), surface air temperature (SAT) and heat fluxes show remarkable similarity among the four sub-arctic seas. With respect to variation in climate, all four seas experience changes of comparable magnitude on interannual to interdecadal time scales, but with different timing. Since 2000 warm SAT anomalies were found during most of the year in three of the four sub-arctic seas, with the exception of the Sea of Okhotsk. A seesaw (out of phase) pattern in winter SAT anomalies between the Labrador and the Barents Sea in the Atlantic sector is observed during the past 50 years before 2000; a similar type of co-variability between the Sea of Okhotsk and the Bering Sea shelf in the Pacific is only evident since 1970s. Recent positive anomalies of net heat flux are more prominent in winter and spring in the Pacific sectors, and in summer in the Atlantic sectors. There is a reduced magnitude in wind mixing in the Sea of Okhotsk since 1980, in the Barents Sea since 2000, and in early spring/late winter in the Bering Sea shelf since 1995. Reduced sea-ice areas are seen over three out of four (except the Sea of Okhotsk) sub-arctic seas in recent decades, particularly after 2000 based on combined in situ and satellite observations (HadISST). This analysis provides context for the pan-regional synthesis of the linkages between climate and marine ecosystems.  相似文献   

19.
The impact of quasi-decadal (QD: 8 to 18 years) variability in the tropical Pacific on ENSO events is investigated. It is found that there is a significant difference in the behavior of ENSO events between the phases of positive and negative anomalies of the QD Niño-3.4 index. During the period of negative QD-scale Niño-3.4 index, ENSO events, especially La Niña events, occur more frequently, and larger amplitudes of thermal anomalies related to El Niño events appear over the central to eastern equatorial Pacific. Furthermore, propagations of upper ocean heat content anomaly and a phase relationship between upper ocean heat content and Niño-3 index in the equatorial Pacific, which have been pointed out by previous studies, are clearly detected during the period of negative QD Niño-3.4 index.  相似文献   

20.
A global spectral barotropic ocean model is introduced to describe the depth-averaged flow. The equations are based on vorticity and divergence (instead of horizontal momentum); continents exert a nearly infinite drag on the fluid. The coding follows that of spectral atmospheric general circulation models using triangular truncation and implicit time integration to provide a first step for seamless coupling to spectral atmospheric global circulation models and an efficient method for filtering of ocean wave dynamics. Five experiments demonstrate the model performance: (i) Bounded by an idealized basin geometry and driven by a zonally uniform wind stress, the ocean circulation shows close similarity with Munk’s analytical solution. (ii) With a real land–sea mask the model is capable of reproducing the spin-up, location and magnitudes of depth-averaged barotropic ocean currents. (iii) The ocean wave-dynamics of equatorial waves, excited by a height perturbation at the equator, shows wave dispersion and reflection at eastern and western coastal boundaries. (iv) The model reproduces propagation times of observed surface gravity waves in the Pacific with real bathymetry. (v) Advection of tracers can be simulated reasonably by the spectral method or a semi-Langrangian transport scheme. This spectral barotropic model may serve as a first step towards an intermediate complexity spectral atmosphere–ocean model for studying atmosphere–ocean interactions in idealized setups and long term climate variability beyond millennia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号