首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Side-scan data from the epicentral area of the 1929 Grand Banks earthquake and cores from the resulting turbidite are used to determine a sediment budget for the event. The 1929 turbidite has a volume of about 185 cubic km, which is mostly sand. Features indicating failure on the continental slope are observed only in muddy sediment. A major source of sand in the heads of the fan valleys of the Laurentian Fan is postulated to balance the sediment budget. This sand accumulated proglacially during the Wisconsinan glaciation and probably failed through liquefaction in the 1929 earthquake.  相似文献   

2.
Gravity cores obtained from isolated seamounts located within, and rising up to 300 m from the sediment-filled Peru–Chile Trench off Southern Central Chile (36°S–39°S) contain numerous turbidite layers which are much coarser than the hemipelagic background sedimentation. The mineralogical composition of some of the beds indicates a mixed origin from various source terrains while the faunal assemblage of benthic foraminifera in one of the turbidite layers shows a mixed origin from upper shelfal to middle-lower bathyal depths which could indicate a multi-source origin and therefore indicate an earthquake triggering of the causing turbidity currents. The bathymetric setting and the grain size distribution of the sampled layers, together with swath echosounder and sediment echosounder data which monitor the distribution of turbidites on the elevated Nazca Plate allow some estimates on the flow direction, flow velocity and height of the causing turbidity currents. We discuss two alternative models of deposition, both of which imply high (175–450 m) turbidity currents and we suggest a channelized transport process as the general mode of turbidite deposition. Whether these turbidites are suspension fallout products of thick turbiditic flows or bedload deposits from sheet-like turbidity currents overwhelming elevated structures cannot be decided upon using our sedimentological data, but the specific morphology of the seamounts rather argues for the first option. Oxygen isotope stratigraphy of one of the cores indicates that the turbiditic sequences were deposited during the last Glacial period and during the following transition period and turbiditic deposition stopped during the Holocene. This climatic coupling seems to be dominant, while the occurrence of megathrust earthquakes provides a trigger mechanism. This seismic triggering takes effect only during times of very high sediment supply to the shelf and slope.  相似文献   

3.
The narrow shelf and upper slope immediately above the Gonone canyon head off NE Sardinia represent areas of very low sedimentation rates. Along the sides of the canyon head (1,600 m water depth), the sediment deposits are homogeneous but show alternating light-grey intervals rich in carbonate and dark-grey ones rich in organic matter, possibly related to distal turbidite processes. Deposits older than 50,000 years are already encountered at core depths of 2.50 m, the sedimentation rates varying from 6–21 cm/103 years in the lower parts of two cores and from 1.5–3 cm/103 years in the upper parts. At about 35,000 years BP, both cores show a simultaneous drop in sedimentation rate by a factor of 3, probably in response to local mechanisms of channel avulsion. Lithological, mineralogical and geochemical properties reveal the environmental factors which are responsible for the extremely slow sediment accumulation. The southernmost sector of the coast, and partly also of the shelf, consists of Jurassic limestones which supply only small amounts of fine-grained material transported in suspension. During the last sea-level highstand, the accumulation of the Cedrino River pro-delta remained restricted to the coast, the low siliciclastic sediment yields resulting in poor shelf sediment trapping. The present morphology of the canyon head prevented the occurrence of gravity processes in the deeper part of the canyon system, including the coring sites. Accordingly, deposition was mainly fed by hemipelagic material of planktonic origin, together with only moderate terrigenous inputs. On a wider late Pleistocene timescale, seismic data indicate the occurrence of a coarse-grained, layered turbidite facies, implying a very different architecture of the canyon drainage system probably prior to 60,000 years BP.  相似文献   

4.
The Rhone Fan is a large Plio-Pleistocene turbidite deposit in the western Mediterranean Sea. The fan is fed from the broad Rhone River delta, but only one canyon, the Petit-Rhone, has fed most of the major turbidite depositional sequences that have been mapped. Slumping of sediment from intercanyon areas on the delta slope also has provided much sediment for the fan. The lack of Recent turbidite deposition on the fan suggests that turbidite sedimentation dominates during glacial low stands of sea level, building major leveed valley sequences, while surficial slumping of the valley levee deposits and pelagic sedimentation seem to mark high stands of sea level during interglacial periods.  相似文献   

5.
The Rhone Fan is a large Plio-Pleistocene turbidite deposit in the western Mediterranean Sea. The fan is fed from the broad Rhone River delta, but only one canyon, the Petit-Rhone, has fed most of the major turbidite depositional sequences that have been mapped. Slumping of sediment from intercanyon areas on the delta slope also has provided much sediment for the fan. The lack of Recent turbidite deposition on the fan suggests that turbidite sedimentation dominates during glacial low stands of sea level, building major leveed valley sequences, while surficial slumping of the valley levee deposits and pelagic sedimentation seem to mark high stands of sea level during interglacial periods. Margin setting represents fan and/or source area  相似文献   

6.
The Var turbidite system is a small sandy system located in the Ligurian Basin. It was deposited during the Pliocene-Quaternary in a flat-floored basin formed during the Messinian salinity crisis. The system was fed through time by the Var and Paillon canyons that connect directly to the Var and Paillon rivers. It is still active during the present sea-level highstand. Two main mechanisms are responsible for gravity-flow triggering in the Var turbidite system: (1) mass-wasting events affect mainly the upper part of the continental slope, in areas where volumes of fresh sediment delivered by rivers are highest, and result from the under-consolidation state of slope sediments and earthquakes, and (2) high-magnitude river floods resulting from melting of snow and convective rainfall during fall and spring seasons, and generating hyperpycnal turbidity currents at river mouths when the density of freshwater transporting suspended particles exceeds that of ambient seawater. Failure- and flood-induced gravity flows are involved through time in the construction of the Var Sedimentary Ridge, the prominent right-hand levee of the Var system, and sediment waves. Processes of construction of both the Var Ridge and sediment waves are closely connected. Sandy deposits are thick and abundant in the eastern (downchannel) part of the ridge. Their distribution is highly constrained by the strong difference of depositional processes across the sediment waves, potentially resulting through time in the individualization of large and interconnected sand bodies.  相似文献   

7.
This study focuses on the interpretation of stratigraphic sequences through the integration of biostratigraphic, well log and 3D seismic data. Sequence analysis is used to identify significant surfaces, systems tracts, and sequences for the Miocene succession.The depositional systems in this area are dominantly represented by submarine fans deposited on the slope and the basin floor. The main depositional elements that characterize these depositional settings are channel systems (channel-fills, channel-levee systems), frontal splays, frontal splay complexes, lobes of debrites and mass-transport complexes.Five genetic sequences were identified and eleven stratigraphic surfaces interpreted and correlated through the study area. The Oligocene-lower Miocene, lower Miocene and middle Miocene sequences were deposited in bathyal water depths, whereas the upper Miocene sequences (Tortonian and Messinian) were deposited in bathyal and outer neritic water depths. The bulk of the Miocene succession, from the older to younger deposits consists of mass-transport deposits (Oligocene-lower Miocene); mass transport deposits and turbidite deposits (lower Miocene); debrite deposits and turbidite deposits (middle Miocene); and debrite deposits, turbidite deposits and pelagic and hemipelagic sediments (upper Miocene). Cycles of sedimentation are delineated by regionally extensive maximum flooding surfaces within condensed sections of hemipelagic mudstone which represent starved basin floors. These condensed sections are markers for regional correlation, and the maximum flooding surfaces, which they include, are the key surfaces for the construction of the Miocene stratigraphic framework. The falling-stage system tract forms the bulk of the Miocene sequences. Individual sequence geometry and thickness were controlled largely by salt evacuation and large-scale sedimentation patterns. For the upper Miocene, the older sequence (Tortonian) includes sandy deposits, whereas the overlying younger sequence (Messinian) includes sandy facies at the base and muddy facies at the top; this trend reflects the change from slope to shelf settings.  相似文献   

8.
Based on analysis of well and drilling data, cores, sediment grains and 3D seismic data, four types of turbidites–slope fan, channelized, laminated and sublacustrine fan turbidite–are identified in Members 1 and 2 of the Qingshankou Formation in northern Songliao Basin. The slope fan turbidite is located in Members 1 and 2 of the Qingshankou Formation. It is dominated by silt and fine sand and is distributed in an SN-trending ribbon zone along the slope break at delta front in the western part of the basin. The channelized turbidite is located at the bottom of Member 1 of the Qingshankou Formation. It is dominated by silt and fine sand and is distributed in an SN-trending strip-shaped zone along the Qijia-Gulong sag, with funnel-shaped sublacustrine fans at the end. The laminated turbidite body is located in Member 2 of the Qingshankou Formation. It is dominated by siltstone and argillaceous siltstone and is distributed continuously in a tongue-shaped zone along the northern delta front towards the lacustrine region, with belt-like distributaries at the central part and sublacustrine fans at the end. Low-permeability and low-yield lithologic reservoirs are formed near the delta front within the slope fan turbidite and channelized turbidite. There are “sweet spots” in local regions, where reservoir reform techniques are required to attain high industrial yields. Laminated turbidite and sublacustrine fans can form unconventional and continuous reservoirs that generally have no natural productivity; industrial production is impossible until horizontal drilling and multistage volume fracturing are employed. Therefore, the research results are important to the exploration of unconventional oil and gas reservoirs in northern Songliao Basin.  相似文献   

9.
The marine fill of ancient foreland basins is primarily recorded by depositional systems consisting of facies and facies associations deposited by a variety of sediment gravity flows in shallow-marine, slope and basinal settings. Tectonism and climate were apparently the main factors controlling the sediment supply, accommodation and depositional style of these systems. In marginal deltaic systems, sedimentation is dominated by flood-generated hyperpycnal flows that build up impressive accumulations of graded sandstone beds in front of relatively small high-gradient fan-deltas and river deltas. During periods of tectonically forced lowstands of sealevel, these systems may commonly shift basinward to shelfal and slope regions. Instability along the edges of these lowstand deltas and sand-laden hyperpycnal flows generate immature and coarse-grained turbidite systems commonly confined within structural depressions and generally encased in distal delta-front and prodeltaic deposits. Because of the close vertical and lateral stratigraphic relations between deltaic and turbidite-like facies, these marginal systems are herein termed ‘mixed depositional systems’. They are very common in the fill of foreland basins and represent the natural link between deltaic and basinal turbidite sedimentation.Basinal turbidite systems form in deeper water elongate highly subsiding troughs (foredeeps) that developed in front of advancing thrust systems. The impressive volumes of sheet-sandstones that form the fill of these troughs suggest that basinal turbidite systems are likely to form following periods of dramatic tectonic uplift of adjacent orogenic wedges and related high-amplitude tectonically-forced sealevel lowstands. In such deep basinal settings, sediment flux to the sea is dramatically increased by newly formed sediment in fluvial drainage basins and the subaerial and submarine erosion of falling-sealevel deltaic deposits generated during the uplift. Turbidity currents are very likely to be mainly triggered by floods, via hyperpycnal flows and related sediment failures, but can fully develop only in large-scale erosional conduits after a phase of catastrophic acceleration and ensuing bulking produced by bed erosion. This process leads to deepening and widening of the conduits and the formation of large-volume highly efficient bipartite currents whose energy dissipation is substantially reduced by the narrow and elongate basin geometry. These currents can thus carry their sediment load over considerable distances down the basin axis.  相似文献   

10.
通过对东北太平洋胡安·德富卡隆起西翼沉积柱样中的碳酸盐含量和浮游有孔虫氧同位素测试以及浮游有孔虫丰度、溶解指数和粗组分的统计,发现在晚第四纪约65 ka以来碳酸盐含量变化幅度大(0 4%~77 2%),相差非常悬殊,但其变化未呈现出冰期时溶解作用减弱、间冰期时溶解作用强烈这样明显的旋回性。粗组分分析结果显示,地层中有明显的浊流沉积发育。另外,碳酸盐含量和浮游有孔虫丰度分析结果揭露了研究区的 CCD在3 500 m左右。研究认为,在约65 ka来水深浅于3 500 m的区域碳酸盐含量的无规律性变化应与浊流沉积影响有直接的关系,而水深深于3 500 m的区域碳酸盐含量主要受控于深海碳酸盐的溶解作用。  相似文献   

11.
A series of sediment cores were obtained from the Whiting Basin southeast of Puerto Rico to investigate the factors affecting the velocity of sound in marine carbonate deposits. The cores indicated that the deposits in the Whiting Basin are similar to abyssal-plain deposits with lenticular turbidite sequences alternating with pelagic sediments. The sediment, comprised of highly porous sands and silts, averaged 80% calcium carbonate consisting of aragonite, low-Mg calcite and high-Mg calcite.Normal methods for predicting sound velocity from the physical properties of the deposits were found to be inaccurate for these samples. The established relationships of grain size and porosity to sound velocity were invalid because the sands found in the cores consisted of hollow-foram tests, causing high porosity independent of grain size. The rigidity of the deposit was the most significant factor determining sediment sound velocity and was itself controlled by the sediment source, transportation effects and the packing of the deposit. Future work is needed to accurately measure the effect of these factors on the rigidity modulus.  相似文献   

12.
Submarine fans and turbidite systems are important and sensitive features located offshore from river deltas that archive tectonic events, regional climate, sea level variations and erosional process. Very little is known about the sedimentary structure of the 1800 km long and 400 km wide Mozambique Fan, which is fed by the Zambezi and spreads out into the Mozambique Channel. New multichannel seismic profiles in the Mozambique Basin reveal multiple feeder systems of the upper fan that have been active concurrently or consecutively since Late Cretaceous. We identify two buried, ancient turbidite systems off Mozambique in addition to the previously known Zambezi-Channel system and another hypothesized active system. The oldest part of the upper fan, located north of the present-day mouth of the Zambezi, was active from Late Cretaceous to Eocene times. Regional uplift caused an increased sediment flux that continued until Eocene times, allowing the fan to migrate southwards under the influence of bottom currents. Following the mid-Oligocene marine regression, the Beira High Channel-levee complex fed the Mozambique Fan from the southwest until Miocene times, reworking sediments from the shelf and continental slope into the distal abyssal fan. Since the Miocene, sediments have bypassed the shelf and upper fan region through the Zambezi Valley system directly into the Zambezi Channel. The morphology of the turbidite system off Mozambique is strongly linked to onshore tectonic events and the variations in sea level and sediment flux.  相似文献   

13.
松辽盆地泉四段扶余油层地层层序新认识   总被引:4,自引:0,他引:4  
松辽盆地泉四段扶余油层发育浅水湖泊三角洲相和浅水湖泊相,沉积构造环境属于闭塞浅水坳陷湖盆,其层序特征类似于稳定克拉通盆地层序,也类似于缓坡被动大陆边缘型盆地层序,气候是控制陆相坳陷盆地层序形成的主要因素,三级层序内总体应表现为水进体系域-高位体系域构成1个完整的层序,而低位体系域不发育。通过岩心、录井、地震等资料研究分析,认为泉四段扶余油层是1个三级层序,发育水进体系域和顶部薄层强制水退边缘体系域;泉四段与泉三段地层分界是其层序的底界;泉四段顶界地震反射层T2也是层序边界,是泉四段三级层序的顶界。精确识别和建立地层层序格架对石油勘探开发具有重要的指导意义。  相似文献   

14.
Emplacement of post-glacial turbidites is commonly controlled by rapid changes in sea level or by seismicity. On the continental rise of the Gulf of Lions (Western Mediterranean), an aseismic area, we identified turbiditic beds deposited during the rising stage and highstand of sea level. Swath bathymetry, sediment cores, in situ Cone Penetrating Tests (CPTU), heavy mineral associations and radiocarbon dating determined the source, composition, distribution and age of the turbiditic beds. Turbidites are composed of homogeneous to positively graded silts to medium sand with quartz (up to 90%), shell debris and shelfal benthic faunas. Their distribution on the sea floor is very patchy and controlled by abundant inherited erosional bedforms. Their source is found in relict regressive sands at the outershelf. Their deposition occurred just after the onset of the post-glacial sea level rise and the concomitant sediment starvation of the Rhône deep sea turbiditic system until recently. Whilst canyons are fed with sand by strong seasonal hydro-sedimentary dynamics on the outershelf, the emplacement of post-glacial turbidites is not controlled by sea level changes but probably by the periodic flushing of the canyons. Our study revealed that this low energy aseismic margin undergoes significant transport of sand, down to the base of slope, during the sea-level rise and the Holocene highstand.  相似文献   

15.
A series of Mesozoic rift basins formed in eastern China were associated with magmatic activity and subduction along the Eurasia, Izanagi and Pacific plate margins. The impact of magmatic activity on lacustrine sequence development was documented with well-log and 3-D seismic data from the Jupiter Depression in the North Yellow Sea Basin. We identified key surfaces, retrogradational and progradational parasequence sets, and defined the characteristics of systems tracts and the internal sequence components for the Lower Cretaceous (K1SQ1). A 2-D SEDPAK numerical stratigraphic forward modeling was used to further constrain sequence development in the Jupiter Depression by considering different modeling parameters and the spatial-temporal characteristics of magmatic activity. Modeling results were compared and matched with the sequence architecture observed from seismic and well interpretations. Magmatic activity impacts on the development of the K1SQ1 sequence in the North Yellow Sea Basin include topographic variation, lake level fluctuation, and sediment supply ratios. Results suggest that magmatic upwelling uplifted the northwestern area of the Jupiter Depression and formed its slope break during the late Jurassic or early Cretaceous. Along with uplifting, relative lake level dropped sharply and lake accommodation was reduced, but with increased sediment supply. Therefore, sediment accumulated along the slope break as a lowstand systems tract. Later on, as lake level continuously rose, transgressive and highstand systems tracts were developed. The proposed stacking pattern provides an analog, and a useful model, for lacustrine sequence development in response to magmatic activities in eastern China and other rift basins of similar tectonic setting.  相似文献   

16.
In order to define the nature and distribution of the organic matter (OM) preserved in the modern Ogooué deep sea turbidite system (Gabon), bulk geochemical techniques (Rock-Eval pyrolysis, elemental and isotopic analyses) and palynofacies were applied to three piston cores collected in the Cape Lopez Canyon and lobe and on the continental slope, north of the canyon.The hemipelagic sedimentation in the study area is characterized by high accumulations of well-preserved OM (∼2-3 wt. TOC %). Bulk geochemical and palynofacies analysis indicate both a marine and terrestrial origin of the OM. Contribution of the marine source is higher on the slope than in the canyon and lobe.OM accumulation in turbidites is strongly controlled by the combined influence of the Cape Lopez Canyon and littoral drift. In the canyon and lobe, turbidites show generally low TOC content (0.5 wt. %) and OM is oxidized. The origin of the OM is interpreted as both marine and terrestrial, with a higher contribution of continental source versus marine source. The low TOC contents are due to the large siliciclastic fraction transported by the littoral drift and diverted in the Cape Lopez Canyon during high energy processes (e.g. storms) which tend to dilute the OM in the turbidites. Transport by long-shore currents and/or turbiditic flows leads to oxidation of the OM.On the continental slope located north of the Cape Lopez Canyon, large amounts of OM are deposited in turbidites (up to 14 wt. %). The OM is predominantly derived from terrestrial land plants and has not been subjected to intense oxidation. These deposits are characterized by high hydrocarbon potential (up to 27 kg HC/t rock), indicating a good potential as gas-prone source rock. Because Cape Lopez Canyon captures a significant part of the sediment transported by the littoral drift, the siliciclastic sedimentary flux is reduced north of the canyon; OM is thus concentrated in the turbidites. Variation in TOC content within turbidite laminae can be explained by the burst and sweep deposition process affecting the boundary layer of the turbulent flow.This study confirms that gravity flows play a preponderant role in the accumulation and preservation of OM in deep water and that deep sea turbidite systems could be regarded as an environment where organic sedimentation occurs.  相似文献   

17.
Sedimentary, isotopic and bulk geochemical proxies measured in sediment samples of five gravity cores collected in the distal part of the Ogooue turbidite system (around 4000 m-depth) were used to develop a conceptual model to describe the accumulation of terrigenous organic matter (OM) during the last 200,000 yrs BP in the eastern part of the Gulf of Guinea. This model takes into account the influence of the different depositional processes (turbiditic vs hemipelagic sedimentation), geomorphological features and sea-level variations.Total organic carbon (TOC) and the stable organic carbon isotopes of the OM (δ13C) variability follow the highstand/lowstand (interglacial/glacial) cyclicity with a very low accumulation rate of terrigenous OM during periods of high sea-level and higher accumulation rate during period of low sea-level. A sea-level of 80–120 m below present day seems to favor the transfer of terrigenous sediments to the deep offshore environment through the turbidite system and thanks to the connection of the canyons heads with the river system presently located at the shelf edge at −120 m water depth.In this system, terrigenous OM matter delivered by the river accumulate in the sediments via two main processes. Indeed, a part of the terrigenous OM settles in combination with the finest particles forming hemipelagites, while another part, formed of very well preserved land plant debris, is transported and deposited far offshore with turbidity currents. The proportion of terrigenous OM accumulated due to turbidity currents is important as it can represent more than 70% of the carbon accumulated during sea-level lowstand. Moreover, terrigenous OM seems to preferentially accumulate in the levees and the lobes of the system notably due to the higher frequency of organic-rich turbidites.This study demonstrates that gravity flows, influenced by the sea-level variations, can significantly affect the terrigenous OM budget of the deep offshore Atlantic margins and that channel-levee complexes as well as turbidite lobes can be regarded as good sink for terrestrial organic carbon. These processes should be taken into consideration in the context of source rocks exploration but also for the estimation of the general carbon accumulation in ocean sediment.  相似文献   

18.
The pore water concentrations of dissolved silica in sediment cores from the continental slope offshore from Cape Hatteras, North Carolina, varied from 150 to almost 700 μ,M with depth in the top 40 cm of sediment. Sediment cores from 630 to 2010 m depth had very similar profiles of dissolved silica in their pore waters, even though these cores came from regions greatly different in slope, topography, sedimentation rate, and abundance of benthic macrofauna. Cores from 474 to 525 m were more variable, both with respect to pore water dissolved silica profiles, and with respect to sediment texture. Experiments indicate that both the rate of dissolution of silica and the saturation concentration decrease as sediment depth below the sediment-seawater interface increases. These data are consistent with depletion of a reactive silica phase in surface sediment, which may be radiolarian tests, or the alteration of biogenic silica to a less reactive form over time. Experimental results suggest that the pore water dissolved silica concentration in sediments below the top few centimeters may be higher than the sediments could now achieve. The flux of dissolved silica out of these sediments is estimated to be 15 μmoles cm−2 yr−1.  相似文献   

19.
Multichannel seismic data from the eastern parts of the Riiser-Larsen Sea have been analyzed with a sequence stratigraphic approach. The data set covers a wide bathymetric range from the lower continental slope to the abyssal plain. Four different sequences (termed RLS-A to RLS-D, from deepest to shallowest) are recognized within the sedimentary section. The RLS-A sequence encompasses the inferred pre-glacial part of the deposits. Initial phases of ice sheet arrival at the eastern Riiser-Larsen Sea margin resulted in the deposition of multiple debris flow units and/or slumps on the upper part of the continental rise (RLS-B). The nature and distribution of these deposits indicate sediment supply from a line or a multi-point source. The subsequent stage of downslope sediment transport activity was dominated by turbidity currents, depositing mainly as distal turbidite sheets on the lower rise/abyssal plain (RLS-C). We attribute this to margin progradation and/or a more focussed sediment delivery to the continental shelf edge. As the accommodation space on the lower rise/abyssal plain declined and the base level was raised, the turbidite channels started to backstep and develop large channel–levee complexes on the upper parts of the continental rise (RLS-D). The deposition of various drift deposits on the lower rise/abyssal plain and along the western margin of the Gunnerus Ridge indicates that the RLS-D sequence is also associated with increased activity of contour currents. The drift deposits overlie a distinct regional unconformity which is considered to reflect a major paleoceanographic event, probably related to a Middle Miocene intensification of the Antarctic Circumpolar Current.  相似文献   

20.
Reinhardt  L.  Kudrass  H.-R.  Lückge  A.  Wiedicke  M.  Wunderlich  J.  Wendt  G. 《Marine Geophysical Researches》2002,23(4):335-351
About 6000 km of both bathymetric and high-resolution acoustic profiles were acquired on the shelf and upper slope offshore Peru between 9° S and 14° S. Two new sediment echosounder systems – SEL-96 and SES-2000DS – provided details of the sedimentary structures of the Quaternary sequences within the Sechura-Salaverry, Huacho and Pisco Basins. To a great extent, the poleward undercurrent determines the distribution of sediments. The undercurrent has generated numerous erosional unconformities, it has winnowed hardgrounds and has created mudwaves common between 250 m and 400 m water depth. Distinct subbottom reflectors within sedimentary units represent hiatuses due to periods of intensified winnowing or non-deposition. Erosional unconformities usually marked by pronounced reflectors suggest shifts of the undercurrent system related to climatic changes and eustatic variations of sea level. On a larger scale, the stacked prograding depositional sequences reflect the sea-level cycles of the Middle Pleistocene to the Holocene. Based on the stratigraphy of our piston cores and that of Ocean Drilling Program (ODP) Site 680, the depositional sequences limited by extended unconformities were assigned to oxygen isotope stages 1 to 7. Other sedimentary structures are small straight channels that were conduits for downslope sediment transport. Deformed sediments associated with synsedimentary normal faults result from creep movements indicating beginning slope failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号