首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 684 毫秒
1.
The dynamics controlling the response of the Baltic Sea to changed atmospheric and hydrologic forcing are reviewed and demonstrated using simple models. The response time for salt is 30 times longer than for heat in the Baltic Sea. In the course of a year, the Baltic Sea renews most of its heat but only about 3% of its salt. On the seasonal scale, surface temperature and ice-coverage are controlled by the atmospheric conditions over the Baltic Sea as demonstrated by e.g. the strong inter-annual variations in winter temperature and ice-coverage due to variations in dominating wind directions causing alternating mild and cold winters. The response of surface temperature and ice-coverage in the Baltic Sea to modest climate change may therefore be predicted using existing statistics. Due to the long response time in combination with complicated dynamics, the response of the salinity of the Baltic Sea cannot be predicted using existing statistics but has to be computed from mechanistic models. Salinity changes primarily through changes in the two major forcing factors: the supply of freshwater and the low-frequency sea level fluctuations in the Kattegat. The sensitivity of Baltic Sea salinity to changed freshwater supply is investigated using a simple mechanistic steady-state model that includes baroclinic geostrophic outflow from the Kattegat, the major dynamical factor controlling the freshwater content in the Kattegat and thereby the salinity of water flowing into the Baltic Sea. The computed sensitivity of Baltic Sea surface salinity to changes of freshwater supply is similar to earlier published estimates from time-dependent dynamical models with higher resolution. According to the model, the Baltic Sea would become fresh at a mean freshwater supply of about 60 000 m3 s−1, i.e. a 300% increase of the contemporary supply. If the freshwater supply in the different basins increased in proportion to the present-day supply, the Bothnian Bay would become fresh already at a freshwater supply of about 37 000 m3 s−1 and the Bothnian Sea at a supply of about 45 000 m3 s−1. The assumption of baroclinic geostrophic outflow from the Kattegat, crucial for the salinity response of the Baltic Sea to changed freshwater supply, is validated using daily salinity profiles for the period 1931–1977 from lightship Läsö Nord.  相似文献   

2.
A three-dimensional, eddy-permitting ocean circulation model with implemented bottom boundary layer model and flux-corrected transport scheme is used to calculate the pathways and ages of various water masses in the Baltic Sea. The agreement between simulated and observed temperature and salinity profiles of the period 1980–2004 is satisfactory. Especially the renewal of the deep water in the Baltic proper by gravity-driven dense bottom flows is better simulated than in previous versions of the model. Based upon these model results details of the mean circulation are analyzed. For instance, it is found that after the major Baltic inflow in January 2003 saline water passing the Słupsk Furrow flows directly towards northeast along the eastern slope of the Hoburg Channel. However, after the baroclinic summer inflow in August/September 2002 the deep water flow spreads along the southwestern slope of the Gdansk Basin. Further, the model results show that the patterns of mean vertical advective fluxes across the halocline that close the large-scale vertical circulation are rather patchy. Mainly within distinct areas are particles of the saline inflow water advected vertically from the deep water into the surface layer. To analyze the time scales of the circulation mean ages of various water masses are calculated. It is found that at the sea surface of the Bornholm Basin, Gotland Basin, Bothnian Sea, and Bothnian Bay the mean ages associated to inflowing water from Kattegat amount to 26–30, 28–34, 34–38, and 38–42 years, respectively. Largest mean sea surface ages of more than 30 years associated to the freshwater of the rivers are found in the central Gotland Basin and Belt Sea. At the bottom the mean ages are largest in the western Gotland Basin and amount to more than 36 years. In the Baltic proper vertical gradients of ages associated to the freshwater inflow are smaller than in the case of inflowing saltwater from Kattegat indicating an efficient recirculation of freshwater in the Baltic Sea.  相似文献   

3.
Sea level changes in the Baltic Sea are dominated by internal, short-term variations that are mostly caused by the ephemeral nature of atmospheric conditions over the Baltic area. Tides are small and their influence decreases from western parts of the Baltic Sea to the Baltic Proper. Superimposed to the large short-term sea level changes (up to few decimeters from day to day) are seasonal and interannual variations (centimeters to decimeters). This study focuses on the comparison of sea surface heights obtained from observations and from a high resolution oceanographic model of the Baltic Sea. From this comparison, the accuracy of the modeled sea surface variations is evaluated, which is a necessary precondition for the further use of the oceanographic model in geodetic applications. The model reproduces all observed Baltic sea level variations very reliably with an accuracy of 5 to 9 cm (rms) for short-term variations (up to 2 months) and 8 cm (rms) for long-term variations (>2 months). An additional improvement of the model can be attained by including long-period sea level variations of the North Sea. The model performs well also in the case of extreme sea level events, as is shown for a major storm surge that occurred at the southern coast of the Baltic Sea in November 1995.  相似文献   

4.
The dynamics in the transition zone between the North Sea and Baltic Sea are analyzed here using data from a 22-year-long climatic simulation with a focus on the periods 1992–1994 and 2001–2003 when two recent major inflow events occurred. Observations from gauges and in situ measurements are used to validate the model. Parameters, which cannot be easily measured, such as water and salt transports through straits, have been compared against similar previous estimates. The good performance of simulations is attributed to the finer resolution of the model compared to earlier set ups. The outflow in the Kattegat, which is an analogue of the tidal outflows, tends to propagate to the North over the shallows without showing a substantial deflection to the right due to the Earth's rotation. The inflow follows the topography. The different inflow and outflow pathways are explained as a consequence of the specific combination of bathymetry, axial and lateral processes. The circulation in Kattegat is persistently clockwise with an eastern intensification during inflow and a western one during outflow regimes. The tidal wave there propagates as Kelvin wave, keeping the coast on its right. The flows in the two main straits reveal very different responses to tides, which are also highly asymmetric during inflow and outflow conditions. The circulation has a typical two-layer structure, the correlation between salinity and velocity tends to increase the salt transport in the salinity conveyor belt. The transversal circulation in the entrance of the Sound enhances the vertical mixing of the saltier North Sea water. The long-term averaged ratio of the water transports through the Great Belt and the Sound is ∼2.6-2.7 but this number changes reaching lower values during the major inflow in 1993. The transports in the straits are asymmetric. During inflow events the repartition of water penetrating the Baltic Sea is strongly in favor of the pathway through the Sound, which provides a shorter connection between the Kattegat and Baltic proper. The wider Great Belt has a relatively larger role in exporting water from the Baltic into the North Sea. A demonstration is given that the ventilation of the Baltic Sea deep water is not only governed by the dynamics in the straits and the strong westerly winds enhancing the eastward propagation of North Sea water (a case in 1993), but also by the clockwise circulation in the Kattegat acting as a preconditioning factor for the flow-partitioning.  相似文献   

5.
Editorial     
Karl Rinner 《Marine Geodesy》2013,36(3):203-205
The long‐term mean sea level in the Baltic Sea is investigated using the coupled three‐basin model constructed by Carlsson (1997). The model is forced by the observed sea level in the Kattegat, the freshwater supply, horizontal air pressure and density gradients, and the wind stress. Both the seasonal variations and the slope of the mean sea level are investigated and compared with the results of another oceanographic model (Lisitzin, 1962) and a geodetic model (Ekman &; Mäkinen, 1996). In the geodetic model an unofficial height system, NH60, is used, and one part of the investigation is to find out whether this height system is useful for oceanographers. The estimated mean sea level difference between the northern and the southern parts of the Baltic Sea are: 17.1 cm (the present model), 26 cm (Lisitzin's model), and 18.3 cm (the geodetic model). It is concluded that the mean sea level difference between the northern and southern parts of the Baltic Sea is due mainly to horizontal variations of density and air pressure, and that the height system NH60 is suitable for oceanographie applications.  相似文献   

6.
Daily observations of the salinity of the Marsdiep tidal inlet, which connects the Dutch western Wadden Sea with the North Sea, already started over 140 years ago, in 1860. Since the year 2000 the sampling frequency has increased because of the use of electronic sensors. Analysis of these salinity data have revealed variations on time scales from tidal (~ 12 hour), seasonal, inter-annual, and multi-decadal, to centennial. The contributions of the salinity variations in the Marsdiep for these different spectral bands or time scales are all of the order of a standard deviation of 0.5 to 1. The centennial variation, which can be expressed as a 140 year long salinity trend, is related to engineering works on the rivers Rhine and IJssel, which already started in the early 18-th century, and more than doubled the magnitude of the freshwater content of the western Wadden Sea since then. In contrast with this anthropogenic salinity trend, the climatic variability of the precipitation over western Europe, and the connected changes in the Rhine discharge, are mainly responsible for the inter-annual variations in the salinity and/or freshwater content of the western Wadden Sea. Since variations in salinity and freshwater content also reflect variations in the terrigeneous and river influence on the Wadden ecosystem, e.g. via the nutrient content, it can be expected that the ecology of the Wadden Sea also experienced changes on centennial time scales.  相似文献   

7.
Long-term (1965–2000) changes of macrozoobenthos and hydrography have been studied in the Gulf of Finland (GoF). For the first time, statistical multivariate time series analysis is applied to Baltic Sea data to verify the relationship between biota and interacting environmental factors causing large-scale hypoxia in the open sea. For macrozoobenthos, a consistent long-term development of the assemblages was found over the study area. In the period before the 1990s, very sparse macrozoobenthos prevailed, followed by a notable expansion of macrofauna between the late 1980s and early 1990s and leading to a maximum of total abundance and species number between 1991 and 1996. After that, a sudden collapse of the communities took place in 1996–1997. The hydrographical changes included a continuous decrease in salinity and density stratification until the early 1990s, after which an increase took place again. In contrast, low mean and minimum dissolved oxygen concentrations were observed at the beginning of the study period, followed by increasing values in the late 1980s and early 1990s, and a simultaneous decline of oxygen conditions in 1996. Based on non-linear trends estimated by dynamic factor analysis (DFA), high and significant correlations were found between total macrofauna abundance, number of species, salinity, oxygen conditions, strength of stratification and freshwater run-off. The results confirm that oxygen is obviously a fundamental factor that determines the state of the macrozoobenthos in the deep GoF, overruling other abiotic factors. However, the improvement of the oxygen conditions is apparently caused by the long-term decrease of salinity and loss of stratification in the relatively shallow GoF, reflecting large-scale changes in hydrography of the Baltic Sea during the long 1977–1993 stagnation period. Thus the development in GoF is opposite to the deeper basins in the central Baltic. We conclude that salinity and stratification are probably linked with climatic variability via freshwater run-off, which may be important in regulating the oxygen conditions and state of macrozoobenthos in GoF.  相似文献   

8.
One hundred years of hydrographic measurements in the Baltic Sea   总被引:1,自引:0,他引:1  
The first measurements of salinity of the deep water in the open Baltic Sea were made in the last decades of the 1800s. At a Scandinavian science meeting in Copenhagen in 1892, Professor Otto Pettersson from Sweden suggested that regular measurements of hydrographic parameters should be carried out at some important deep stations in the Baltic Sea. His suggestion was adopted and since that time we have rather complete hydrographical data from the Bornholm Deep, the Gotland Deep, and the Landsort Deep and from some stations in the Gulf of Bothnia. The measurements were interrupted in the Baltic Proper during the two World Wars. At the beginning only salinity, temperature and dissolved oxygen were measured and one or two expeditions were carried out annually, mostly in summer. In the 1920s also alkalinity and pH were occasionally measured and total carbonate was calculated. A few nutrient measurements were also carried out. After World War II we find results from four or more expeditions every year and intercalibration of methods was arranged. Results of temperature, salinity and dissolved oxygen measurements from the Bornholm Deep, the Gotland Deep, the Landsort Deep and salinity measurements from three stations in the Gulf of Bothnia, covering the whole 20th century are presented and discussed. The salinity distribution and the variations between oxygen and hydrogen sulphide periods in the deep water of the Gotland Deep and the Landsort Deep are demonstrated. Series of phosphate and nitrate distribution in the Gotland Deep are shown from the 1950s to the present and the effects of the stagnant conditions are briefly discussed. Two large inflows of highly saline water, the first during the First World War and the second in 1951, are demonstrated. The 20th century minimum salinity of the bottom water in the Baltic Proper in 1992 is discussed.  相似文献   

9.
利用LEVITUS温盐资料、HOAPS降水及蒸发资料以及OFES模式资料等分析加里曼丹岛西北侧表层低盐水的季节变化规律,并使用盐度平衡模式诊断了海面淡水通量、径流、卷挟作用以及平流作用对低盐水变化的贡献.分析表明:加里曼丹西北侧全年均存在1个低盐水团,其季节变化具有"双峰"特征,3月至4月以及10月至11月会发生2次低...  相似文献   

10.
This study presents a review of extensive literature and reports new findings extracted from previously collected cores. Globally lowered sea level during the last glacial maximum (LGM) reduced the cross-sectional area in the Korea Strait, minimizing volume transport of the paleo-Tsushima Current and increasing freshwater input to the East Sea. The higher supply of freshwater played an important role in compositional changes of surface water in the sea, indicated by low sea surface salinity (down to about 20‰) and light d 18O of planktonic Foraminifera (lighter than 1‰) recorded in core sediments. The Korean fluvial systems (Nakdong and Seomjin rivers) emptying into the southeastern sea of Korea may have contributed substantially to freshwater supply to the surface layer of the LGM East Sea, although Chinese paleo-river (Huanghe and Yangtze rivers) waters, together with the paleo-Tsushima Current, also seem to have supplied some freshwater to the sea. The higher supply of river waters to the East Sea is strongly evidenced by the high amount of terrigenous material (quartz, feldspar and rock fragments) in core sediments. In addition, high magnetic susceptibility, high grain density, and high C/N ratios were documented in cores MB98PC-11 and 95PC-1. In contrast with earlier studies, we propose that Korean rivers played a more substantial role in supplying freshwater to the East Sea during the LGM than previously thought.  相似文献   

11.
The mean sea level along the coasts of the Skagerrak, the Kattegat, and the Danish Straits—i.e., the transition area between the North Sea and the Baltic Sea—has been computed geodetically. The basis consists of mean sea level data from Denmark, Norway, and Sweden in various more or less inappropriate height systems. These are transformed and unified into a common height system relevant for oceanographic purposes to show the deviation of the mean sea level (1960) from the mean geoid, with Normaal Amsterdams Peil (NAP) as zero. The geodetically determined mean sea surface is compared with oceanographic model results for parts of the area. Among other findings, the outflow of low‐salinity water from the Baltic Sea, as well as its separation from high‐salinity North Sea water along the Kattegat‐Skagerrak front are clearly revealed.  相似文献   

12.
本文利用Argo盐度、SODA海流量、OAFlux蒸发量和TRMM降水量等数据,采用盐度收支方程定量给出了印度洋混合层盐度的收支,揭示了整个印度洋净淡水通量项、平流项、垂向卷夹项的分布、季节变化特征及其对混合层盐度变化的主要贡献。结果表明,就多年平均而言,平流项负贡献(15.14%)大于正贡献(9.89%),说明平流输送把低盐水输送到高盐海域,导致印度洋高盐海域混合层的盐度降低。净淡水通量项的分布和季节变化与降水量基本一致,且正贡献(13.70%)大于负贡献(7.81%),说明净淡水通量项使印度洋的混合层盐度升高(因为多年平均蒸发量大于降水量)。盐度季节变化显著海域的进一步分析表明,6?11月,西南季风漂流把赤道西印度洋的低盐水(相对阿拉伯海高盐水而言)输送到阿拉伯海西部海域,导致该海域的盐度降低。平流输送把孟加拉湾湾口和中部的高盐水带到北部海域,是导致北部海域盐度升高的主要原因。  相似文献   

13.
Regions of the formation of the thermal front in the Baltic Sea (a direct manifestation of the lacustrine thermal bar), and its specific features, were analyzed on the basis of subsurface temperature and salinity. Data were obtained from 25 horizontal tows along sections in the southern and central parts of the Baltic Sea during spring 2010 and autumn/winter 2010/2011. The width of the front was approximately 5?C30 km, and the front lifetime was 1.5 months. Horizontal temperature ranged from 0.7 to 2.5°C; thus, the temperature gradient was one- to twofold larger than the long-term monthly mean equivalent. Analysis of hourly temperature and salinity data from the Arkona basin and at the Darss Sill, obtained at 2 m depth, indicated that the surface temperature increased during the transition through temperatures of maximum density at a rate of approximately 0.01?C0.02°C/h between 3?C5 days; which is 1.4- to 5-fold higher than values before and after this period. The thermal front simultaneously propagated along the main sea axis (due to the significant salinity and buoyancy flux variations from south to north), and from the shallow parts towards the deep parts of the Baltic Sea. Therefore, the horizontal advection of the cold/warm waters clearly contributes to the speed increase of the thermal front at the end of the respective season. The speed of the thermal front propagation from south to north was approximately 28 km/day at the end of the spring period of 2010 (based on field data). This was considerably higher in comparison with the typical values of the lacustrine thermal bar speeds; however, it accords with estimates for a basin with depth/salinity horizontal variation.  相似文献   

14.
Based on measurements of the 18O isotope composition of 247 samples collected over a 3-year period we have assessed the oxygen isotope composition of water masses in the North Sea. This is the first δ18O data set that covers the entire North Sea basin. The waters lie on a mixing line: δ18O (‰VSMOW) = −9.300 + 0.274(S) with North Atlantic sub-polar mode water (SPMW) and surface waters, and Baltic Sea water representing the saline and freshwater end members respectively. Patterns exhibited in surface and bottom water δ18O distributions are representative of the general circulation of the North Sea. Oxygen-18 enriched waters from the North Atlantic enter the North Sea between Scotland and Norway and to a lesser extent through the English Channel. In contrast, oxygen-18 depleted waters mainly inflow from the Baltic Sea, the rivers Rhine and Elbe, and to a lesser degree, the Norwegian Fjords and other river sources. Locally the δ18O–salinity relationship will be controlled by the isotopic composition of the freshwater inputs. However, the range of local freshwater compositions around the North Sea basin is too narrow to characterise the relative contributions of individual sources to the overall seawater composition. This dataset provides important information for a number of related disciplines including biogeochemical research and oceanographic studies.  相似文献   

15.
Time series of freshwater runoff, seawater salinity, temperature and oxygen were used in transfer functions (TF) to model changes of mesozooplankton taxa in the Baltic Sea from the 1960’s to the 1990’s. The models were then compared with long term zooplankton monitoring data from the same period. The TF models for all taxa over the whole Baltic proper and at different depth layers showed statistically significant estimates in t-tests. TF models were further compared using parsimony as a criterion. We present models showing 1) r2 > 0.4, 2) the smallest residual standard error with the combination of exploratory variables, 3) the lowest number of parameters and 4) the highest proportional decrease in error term when the TF model residual standard error was compared with those of the univariate ARIMA model of the same response variable. Most often (7 taxa out of a total of 8), zooplankton taxa were dependent on freshwater runoff and/or seawater salinity. Cladocerans and estuarine copepods were more conveniently modelled through the inclusion of seawater temperature and oxygen data as independent variables. Our modelling, however, explains neither the overall increase in zooplankton abundance nor a simultaneous decrease found in the neritic copepod, Temora longicornis. Therefore, biotic controlling agents (e.g. nutrients, primary production and planktivore diets) are suggested as independent variables for further TF modelling. TF modelling enabled us to put the controlling factors in a time frame. It was then possible, despite the inherent multiple correlation among parameters studied to deduce a chain-of-events from the environmental controls and biotic feedback mechanisms to changes in zooplankton species. We suggest that the documented long-term changes in zooplankton could have been driven by climatic regulation only. The control by climate could be mediated to zooplankton through marine chemical and physical factors, as well as biotic factors if all of these were responding to the same external control, such as changes in the freshwater runoff. Increased runoff would explain both the increasing eutrophication, causing the overall increase of zooplankton, and the changes in selective predation, contributing to decline of Temora.  相似文献   

16.
Atlantic Water flow through the Barents and Kara Seas   总被引:2,自引:0,他引:2  
The pathway and transformation of water from the Norwegian Sea across the Barents Sea and through the St. Anna Trough are documented from hydrographic and current measurements of the 1990s. The transport through an array of moorings in the north-eastern Barents Sea was between 0.6 Sv in summer and 2.6 Sv in winter towards the Kara Sea and between zero and 0.3 Sv towards the Barents Sea with a record mean net flow of 1.5 Sv. The westward flow originates in the Fram Strait branch of Atlantic Water at the Eurasian continental slope, while the eastward flow constitutes the Barents Sea branch, continuing from the western Barents Sea opening.About 75% of the eastward flow was colder than 0°C. The flow was strongly sheared, with the highest velocities close to the bottom. A deep layer with almost constant temperature of about −0.5°C throughout the year formed about 50% of the flow to the Kara Sea. This water was a mixture between warm saline Atlantic Water and cold, brine-enriched water generated through freezing and convection in polynyas west of Novaya Zemlya, and possibly also at the Central Bank. Its salinity is lower than that of the Atlantic Water at its entrance to the Barents Sea, because the ice formation occurs in a low salinity surface layer. The released brine increases the salinity and density of the surface layer sufficiently for it to convect, but not necessarily above the salinity of the Atlantic Water. The freshwater west of Novaya Zemlya primarily stems from continental runoff and at the Central Bank probably from ice melt. The amount of fresh water compares to about 22% of the terrestrial freshwater supply to the western Barents Sea. The deep layer continues to the Kara Sea without further change and enters the Nansen Basin at or below the core depth of the warm, saline Fram Strait branch. Because it is colder than 0°C it will not be addressed as Atlantic Water in the Arctic Ocean.In earlier decades, the Atlantic Water advected from Fram Strait was colder by almost 2 K as compared to the 1990s, while the dense Barents Sea water was colder by up to 1 K only in a thin layer at the bottom and the salinity varied significantly. However, also with the resulting higher densities, deep Eurasian Basin water properties were met only in the 1970s. The very low salinities of the Great Salinity Anomaly in 1980 were not discovered in the outflow data. We conclude that the thermal variability of inflowing Atlantic water is damped in the Barents Sea, while the salinity variation is strongly modified through the freshwater conditions and ice growth in the convective area off Novaya Zemlya.  相似文献   

17.
Shelf seas such as the North Sea and the Baltic Sea are characterised by spatially and temporally varying stratification that is highly relevant for their physical dynamics and the evolution of their ecosystems. Stratification may vary from unstably stratified (e.g., due to convective surface cooling) to strongly stratified with density jumps of up to 10 kg/m3 per m (e.g., in overflows into the Baltic Sea). Stratification has a direct impact on vertical turbulent transports (e.g., of nutrients) and influences the entrainment rate of ambient water into dense bottom currents which in turn determine the stratification of and oxygen supply to, e.g., the central Baltic Sea. Moreover, the suppression of the vertical diffusivity at the summer thermocline is one of the limiting factors for the vertical exchange of nutrients in the North Sea. Due to limitations of computational resources and since the locations of such density jumps (either by salinity or temperature) are predicted by the model simulation itself, predefined vertical coordinates cannot always reliably resolve these features. Thus, all shelf sea models with a predefined vertical coordinate distribution are inherently subject to under-resolution of the density structure.To solve this problem, Burchard and Beckers (2004) and Hofmeister et al. (2010) developed the concept of vertically adaptive coordinates for ocean models, where zooming of vertical coordinates at locations of strong stratification (and shear) is imposed. This is achieved by solving a diffusion equation for the position of the coordinates (with the diffusivity being proportional to the stratification or shear frequencies). We will show for a coupled model system of the North Sea and the Baltic Sea (resolution ∼ 1.8 km) how numerical mixing is substantially reduced and model results become significantly more realistic when vertically adaptive coordinates are applied. We additionally demonstrate that vertically adaptive coordinates perform well in simulating the two dynamically different regions North Sea and Baltic Sea with a single parameter set.An analysis of the computational overhead of the adaptive coordinates indicates an increase of 5–8% in runtime. This is still less expensive than adding more sigma-layers to reduce spurious numerical mixing.  相似文献   

18.
Observations of deep ocean temperature and salinity in the Labrador and Greenland Seas indicate that there is negative correlation between the activities of deep convection in these two sites. A previous study suggests that this negative correlation is controlled by the North Atlantic Oscillation (NAO). In this study, we discuss this deep convection seesaw by using a coupled atmosphere and ocean general circulation model. In this simulation, the deep convection is realistically simulated in both the Labrador and Greenland Seas and their negative correlation is also recognized. Regression of sea level pressure to wintertime mixed layer depth in the Labrador Sea reveals strong correlation between the convection and the NAO as previous studies suggest, but a significant portion of their variability is not correlated. On the other hand, the convection in the Greenland Sea is not directly related to the NAO, and its variability is in phase with changes in the freshwater budget in the GIN Seas. The deep convection seesaw found in the model is controlled by freshwater transport through the Denmark Strait. When this transport is larger, more freshwater flows to the Labrador Sea and less to the Greenland Sea. This leads to lower upper-ocean surface salinity in the Labrador Sea and higher salinity in the Greenland Sea, which produces negative correlation between these two deep convective activities. The deep convection seesaw observed in the recent decades could be interpreted as induced by the changes in the freshwater transport through the Denmark Strait, whose role has not been discussed so far.  相似文献   

19.
A one-dimensional salt intrusion model is used to investigate the hydrography of the Ythan estuary, a small shallow macrotidal estuary in the north-east of Scotland. The model simulates the longitudinal distributions of water level, salinity and total oxidized nitrogen (TON) in the estuary. The model employs upstream differencing and the Smolarkiewicz anti-diffusion scheme to avoid the numerical difficulties typically encountered when modelling strong tidal flows using centred differences. The physical mechanisms driving the simulations are the tide at the entrance to the estuary and freshwater discharge at the head. The model was calibrated against measurements of water level made at three locations in the estuary, salinity observations made at a central platform and axial salinity distributions. At both spring and neap tides, the full range of salinity observed at the central platform was simulated. However, at the midway stage between springs and neaps, the simulated peak salinity was less than that observed. This was probably due to the sensitivity of the model to the digitisation of the estuarine bathymetry.The model successfully simulated salinity distributions for periods of high and low river flow, and was used to illustrate how TON concentrations fluctuated in response to variations in river flow. The potential implications of variations in the bathymetry of the estuary on salinity and nutrient distributions were predicted to be slight. However, the four fold increase in riverine TON concentrations that has occurred over the past 30 years was shown to increase TON distributions along the entire length of the estuary. The calculated estuary flushing time was strongly dependent on river flow and varied between 11–60 h.  相似文献   

20.
Mangrove swamps and hypersaline saltflats fringe many estuaries in dry tropical climates, especially in Northern Australia. For most of the year these estuaries receive zero riverine freshwater input and thus, after the wet season, a steady increase in salinity occurs. In some locations the estuary becomes fully inverse, i.e. the salinity increases monotonically from the mouth to the head. In other locations, a salinity maximum zone separates the sea from low salinity water that persists at the head of the estuary throughout the dry season. Field data from five estuaries indicate that in short estuaries where a large area of saltflats and mangroves extends over the whole length of the estuary, the estuary becomes completely inverse with salinity rising to 55 within a couple of months. The evaporation and evapotranspiration over the saltflats and mangroves cause this rapid increase in salinity. Longer estuaries where a large area of salt flat exists only close to the mouth do not become completely hypersaline for the whole length of the estuary by the end of the dry season. A salinity-maximum is generated close to the river mouth but salinities of less than 10 persist in the upper reaches of the estuary until the end of the dry season, even though the estuary does not receive any further freshwater input. A simple analytical expression is presented that reproduces the changes in salinities in the estuaries studied. This model can be used to predict the formation of hypersaline conditions in other mangrove and saltflat fringed estuaries where freshwater flow is negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号