首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 631 毫秒
1.
建立了顶空GC/FPD测定海水中二甲基硫(DMS)和浮游植物细胞中二甲基硫丙酸(DMSP)的方法,并研究盐度、温度、气液相比DMS诸因素对DMS顶空灵敏度的影响。该法对DMS测定的相对标准偏差均小于6%,平均回收率为106%,最低检出限为20ng/L。细胞DMSP先经碱作用转化为DMS,在50℃下作用时间不少于6h,峰高与浓度的双对数线性相关系数大于0.99。对1994年冬、1995年夏采自胶州湾  相似文献   

2.
本文综述了目前国内外有关海水中二甲基硫(DMS)的测定方法及其来源的研究,指出DMSP是海洋生物降解产生DMS的主要来源。  相似文献   

3.
二甲基硫的海洋化学研究   总被引:2,自引:1,他引:1  
二甲基硫(DMS) 是海洋排放到大气中的最主要的生源硫化物。作者综述了DMS在海洋中的分布特征、影响DMS转化的因素、DMS的海空扩散及其对环境的影响等。DMS在海洋中存在很大程度的时空变化,这一变化不仅与海洋初级生产力水平有关,而且还与浮游植物的种类组成密切相关。微生物的降解、光化学的氧化以及海空扩散是DMS在海洋中迁移变化的三个最重要的途径。DMS的海- 空扩散也存在较大的时空变化。DMS的释放会对全球的气候变化和酸雨的形成产生重要的影响。本文同时就国内外的研究现状和今后的研究方向进行了分析和总结。  相似文献   

4.
实验研究海藻体中二甲基硫基丙酸酯(Dimethylsulfoniumpropionate,DMSP)的简单测定方法。改进顶空进样方法灵敏度低的缺点,采用碱解和萃取吸收同时进行气相色谱火焰光度检测法测定不同种类的底栖藻中所含的DMSP。并以此测定不同季节胶州湾部分地区近岸表层水体浮游藻所含的DMSP,同时还测定水体中的磷酸盐浓度。结果表明在底栖藻中DMSP含量随季节呈现一定的规律性变化,不同藻体内DMSP含量相差可达两个数量级,而单位水体微藻中的DM-SP亦随季节呈现一定的规律性变化  相似文献   

5.
本文综述了目前国内外有关海水中二甲基硫(DMS)的测定方法及其来源的研究,指出了DMSP是海洋生物降解产生DMS的主要来源。  相似文献   

6.
李炜  焦念志 《海洋与湖沼》1999,30(6):635-639
3种常见的海洋浮游藻类--扁藻、杜氏藻和牟氏角刺藻作为实验材料,采用正交方法设计实验条件,研究盐度、和光强的变化对藻类细胞内二甲基硫丙酸(DMSP)含量的影响。结果表明,3种藻类细胞DMSP含量相差很大。扁藻DMSP含量最高,其次为杜氏藻,牟氏角刺藻呈最低,种间差别的影响明显高于环境条件的变化对藻DMSP含量的影响。3种环境因陬对藻细胞DMSP含量的影响效果不同,盐度变化引起藻细胞DMSP含量的变  相似文献   

7.
石油地质海洋地质档案资料管理系统“OMGRDMS”将推广应用由地矿部石油地质海洋地质资料馆研制的“地质档案资料管理系统”(Oil&Ma-rineGeologyResourcesDataManagementSystem)以下简称“OMGRDMS”将推广...  相似文献   

8.
二甲基硫光化学氧化反应的动力学研究   总被引:1,自引:1,他引:1  
实验研究水溶液中二甲基硫(DMS)的光化学氧化反应的动力学。结果表明,在入射光频率与强度一定条件下,DMS进行光化学氧化反应的速率会受到介质、pH、重金属离子的影响。Hg2+能显著加快人工海水介质中DMS的光氧化速率。DMS进行光氧化的一级速率常数为4.46×10-5~30.4×10-5s-1,其在光照下的人工海水介质中的半寿期为3.6h。这说明光化学过程对于影响和控制DMS在海洋中的浓度和分布起着十分重要的作用  相似文献   

9.
二甲基硫(DMS)在大气化学和全球生物地球化学循环中起了重要作用,是影响气候变化的重要痕量气体。DMS的前身是β-二甲巯基丙酸(DMSP)。采用顶空气相色谱法(GC)测定海水悬浮颗粒物中DMSP。对实验材料的选择、取样操作、温度的影响、平衡时间的影响和样品保存等问题进行了探讨。该方法精密度为6.9%,回收率为85%。  相似文献   

10.
影响海水中二甲基硫分布的生物因素   总被引:4,自引:0,他引:4  
二甲基硫(DMS)是海水中有机硫化物的重要组成部分,也是参与硫的生物地球化学循环的重要物质,其海空通量约为0.6×1012~1.6×1012mol/a,占海洋中硫释放量的55%~80%。对DMS在海水中的浓度及分布进行分析,是评价其在全球硫循环中所起作用的重要基础。为此,国际上已有不少学者对DMS的来源、分布、海空通量进行了较系统的研究工作。由于充分认识到DMS在全球海洋痕量气体的排放中占有举足轻重的地位,并对全球气候变化和酸雨的形成产生重大影响,有关DMS的浓度与分布、通量与循环的研究已成为当今国际…  相似文献   

11.
This paper reports a case study of atmospheric stability effect on dimethyl sulfide(DMS) concentration in the air. Investigation includes model simulation and field measurements over the Pacific Ocean. DMS concentration in surface sea water and in the air were measured during a research cruise from Hawaii to Tahiti. The diurnal variation of air temperature over the sea surface differed from the diurnal cycle of sea surface temperature because of the high heat capacity of sea water. The diurnal cycle of average DMS concentration in the air was studied in relation to the atmospheric stability parameter and surface heat flux. All these parameters had minima at noon and maxima in the early morning. The correlation coefficient of the air DMS concentration with wind speed (at 15 m high) was 0. 64. The observed concentrations of DMS in the equatorial marine surface layer and their diurnal variability agree well with model simulations. The simulated results indicate that the amplitude of the cycle and the mean  相似文献   

12.
《Marine Chemistry》2001,76(3):137-153
Laboratory experiments, along with in situ investigation in Funka Bay, Japan, were conducted to determine the enrichment factor (EF) of dimethylsulfide (DMS) in the sea surface microlayer, as well as its the production and consumption rates. The EF of DMS in the microlayer was largely affected by various factors including sampling methods, sampling thickness, temperature, salinity, and DMS concentration in bulk water. In all cases but the sealed system, a part of DMS in the microlayer was always unavoidably lost during sampling. High temperature, great wind speed, and slow sampling would increase the extent of loss of DMS due to volatilization. In the field, the screen-collected samples usually exhibited greater microlayer enrichment for DMS than the plate-collected samples, showing that the screen sampler might be more effective for collecting the in situ microlayer DMS. The production and consumption rates of DMS in the surface microlayer were higher than those in the bulk water and these two rates were significantly correlated with the microlayer DMS concentrations. Moreover, the EF of DMS appeared to be related to the microlayer production rate of DMS, providing evidence supporting the observed DMS enrichment in the microlayer. The DMS production and consumption rates were not directly related to its concentrations in the bulk water, suggesting that the processes of production and consumption of DMS were very complex. In the surface microlayer, the biological turnover time of DMS varied from 0.4 to 1.9 days, with an average of 0.9 days, which was about 540-fold greater than the mean DMS sea–air turnover time (2.4 min). Thus, the biological process occurring within the microlayer can be neglected when we consider the sea–air exchange of DMS. Considering the microlayer production rate of DMS (an average of 9.7 nM day−1) to be too small to counteract the sea-to-air removal of DMS, the main source of DMS in the microlayer appears to be through vertical transport by turbulent diffusion from the underlying water.  相似文献   

13.
Dimethylsulfide (DMS) was determined in surface seawater and vertical hydrographic profiles in the Atlantic Ocean during two cruises from Hamburg to Montevideo (Uruguay), and from Miami (Florida) into the Sargasso Sea. These data cover most of the ecological zones of the Atlantic. DMS concentrations are related to the levels of marine primary production, in agreement with its release by marine phytoplankton in laboratory cultures. The vertical distribution of DMS in the euphotic zone follows that of primary production, with a maximum at or near the ocean surface and a decrease with depth. Below the level of 1% light penetration, DMS levels decline gradually, but DMS remains detectable even in the bottom waters. The mean DMS concentration in surface water is 84.4, and in deep water 3.2 ng S (DMS) 1?1. No steep gradients of DMS exist near the sea surface on scales of centimeters to tenths of millimeters. At a drift station, DMS was observed to be diurnally variable, with an increase in concentration in the euphotic zone throughout the day. DMS is actively turned over in the surface ocean with a residence time of a few days, but it is apparently very stable in the deep sea. DMS is the major volatile sulfur compound in the ocean, and its transfer across the air-sea interface contributes significantly to the atmospheric sulfur budget.  相似文献   

14.
《Marine Chemistry》2006,98(2-4):210-222
This study presents concentrations of dimethylsulphide (DMS) and its precursor compound dimethylsulphoniopropionate (DMSP) in a variety of sea ice and seawater habitats in the Antarctic Sea Ice Zone (ASIZ) during spring and summer. Sixty-two sea ice cores of pack and fast ice were collected from twenty-seven sites across an area of the eastern ASIZ (64°E to 110°E; and the Antarctic coastline north to 62°S). Concentrations of DMS in 81 sections of sea ice ranged from < 0.3 to 75 nM, with an average of 12 nM. DMSP in 60 whole sea ice cores ranged from 25 to 796 nM and showed a negative relationship with ice thickness (y = 125x 0.8). Extremely high DMSP concentrations were found in 2 cores of rafted sea ice (2910 and 1110 nM). The relationship of DMSP with ice thickness (excluding rafted ice) suggests that the release of large amounts of DMSP during sea ice melting may occur in discrete areas defined by ice thickness distribution, and may produce ‘hot spots’ of elevated seawater DMS concentration of the order of 100 nM. During early summer across a 500 km transect through melting pack ice, elevated DMS concentrations (range 21–37 nM, mean 31 nM, n = 15) were found in surface seawater. This band of elevated DMS concentration appeared to have been associated with the release of sea ice DMS and DMSP rather than in situ production by an ice edge algal bloom, as chlorophyll a concentrations were relatively low (0.09–0.42 μg l 1). During fast ice melting in the area of Davis station, Prydz Bay, sea ice DMSP was released mostly as extracellular DMSP, since intracellular DMSP was negligible in both hyposaline brine (5 ppt) and in a melt water lens (4–5 ppt), while extracellular DMSP concentrations were as high as 149 and 54 nM, respectively in these habitats. DMS in a melt water lens was relatively high at 11 nM. During the ice-free summer in the coastal Davis area, DMS concentrations in surface seawater were highest immediately following breakout of the fast ice cover in late December (range 5–14 nM), and then remained at relatively low concentrations through to late February (< 0.3–6 nM). These measurements support the view that the melting of Antarctic sea ice produces elevated seawater DMS due to release of sea ice DMS and DMSP.  相似文献   

15.
Theconcentrationanddistributionofdimethylsulfideinthemarineatmosphericboundarylayerneartheequator¥LiXingsheng;LiZhe;F.Parungo...  相似文献   

16.
Spatial variations in dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) were surveyed in the surface microlayer and in the subsurface waters of the low productivity South China Sea in May 2005. Overall, average subsurface water concentrations of DMS and DMSP of dissolved (DMSPd) and particulate (DMSPp) fractions were 1.74 (1.00-2.50), 3.92 (2.21-6.54) and 6.06 (3.40-8.68) nM, respectively. No enrichment in DMS and DMSPp was observed in the microlayer. In contrast, the microlayer showed a DMSPd enrichment, with an average enrichment factor (EF, defined as the ratio of the microlayer concentration to subsurface water concentration) of 1.40. In the study area, none of the sulfur components were correlated with chlorophyll a. An important finding in this study was that DMS, DMSP and chlorophyll a concentrations in the surface microlayer were respectively correlated with those in the subsurface water, suggesting a close linkage between these two water bodies. The ratios of DMS:Chl-a and DMSPp:Chl-a showed a gradually increasing trend from North to South. This might be due to changes in the proportion of DMSP producers in the phytoplankton community with the increased surface seawater temperature. A clear diurnal variation in the DMS and DMSP concentrations was observed at an anchor station with the highest concentrations appearing during the day and the lowest concentrations during the night. The higher DMS and DMSP concentrations during daytime might be attributed to the light-induced increase in both algal synthesis and exudation of DMSP and biological production of DMS. The mean flux of DMS from the investigated area to the atmosphere was estimated to be 2.06 micromo lm(-2)d(-1). This low DMS emission flux, together with the low DMS surface concentrations was attributed to the low productivity in this sea.  相似文献   

17.
Dimethylsulfide enrichment in the surface microlayer of the South China Sea   总被引:5,自引:0,他引:5  
A total of 22 sea surface microlayer samples collected from the Nansha Islands waters of the South China Sea were analyzed for dimethylsulfide (DMS), chlorophyll a and nutrients including nitrate, phosphate and silicate. The DMS concentrations in surface microlayer samples ranged from 82 to 280 ng S/l with a mean of 145 ng S/l. A significant correlation was found between DMS and chlorophyll a data both in the surface microlayer as well as in the subsurface water. However, no correlation was observed between DMS and nutrient concentrations in the surface microlayer. The DMS concentrations were higher in all surface microlayer samples, compared with subsurface samples. The enrichment factor (EF) of DMS in the surface microlayer varied from 1.21 to 3.08 with an average of 1.95. The EF of DMS was significantly correlated with that of chlorophyll a in the microlayer. The enrichment of DMS in the microlayer may be due to two factors, including the in situ production from phytoplankton and the transportation from the underlying seawater. The diel variations in DMS and chlorophyll a concentrations were studied at a fixed station. The highest concentrations of DMS in the surface microlayer and subsurface water were simultaneously observed in the late afternoon (1800 h), while the highest levels of chlorophyll a were simultaneously found at night (0200 h).  相似文献   

18.
Reviews on the cunent studies on the sea to air flux ofdimethyl sulfide (DMS) have been made at home and abroad, pointing out that the flux of DMS is influenced by many factors.There is great difference between the results coming fiom different models. Besides, this paper focuses on the oxidation mechanisms of DMS by OH and NO3 radicals after it enters the atmosphere, the oxidation products' contribution to acid rain and fog and the relationships among the DMS, CCN and climate system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号