首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
In this study, we develop a variable-grid global ocean general circulation model(OGCM) with a fine grid(1/6)°covering the area from 20°S–50°N and from 99°–150°E, and use the model to investigate the isopycnal surface circulation in the South China Sea(SCS). The simulated results show four layer structures in vertical: the surface and subsurface circulation of the SCS are characterized by the monsoon driven circulation, with basin-scaled cyclonic gyre in winter and anti-cyclonic gyre in summer. The intermediate layer circulation is opposite to the upper layer, showing anti-cyclonic gyre in winter but cyclonic gyre in summer. The circulation in the deep layer is much weaker in spring and summer, with the maximum velocity speed below 0.6 cm/s. In fall and winter, the SCS deep layer circulation shows strong east boundary current along the west coast of Philippine with the velocity speed at 1.5 m/s, which flows southward in fall and northward in winter. The results have also revealed a fourlayer vertical structure of water exchange through the Luzon Strait. The dynamics of the intermediate and deep circulation are attributed to the monsoon driving and the Luzon Strait transport forcing.  相似文献   

2.
A coupled single-layer/two-layer model is employed to study the South China Sea (SCS) upper circulation and its response before and after the onset of summer monsoon. It is found that, in summer, due to the β effect and the first baroclinic mode of the wind-driven current, a northward western boundary jet current is formed along the Indo-China Peninsula coast, and it leaves the coast at about 13° N and diffuses towards northeast; next to the Indo-China Peninsula, a large anticyclonic  相似文献   

3.
卡里马塔海峡水体交换的季节变化   总被引:2,自引:0,他引:2  
Four trawl-resistant bottom mounts, with acoustic Doppler current profilers(ADCPs) embedded, were deployed in the Karimata Strait from November 2008 to June 2015 as part of the South China Sea-Indonesian Seas Transport/Exchange and Impact on Seasonal Fish Migration(SITE) Program, to estimate the volume and property transport between the South China Sea and Indonesian seas via the strait. The observed current data reveal that the volume transport through the Karimata Strait exhibits significant seasonal variation. The winteraveraged(from December to February) transport is –1.99 Sv(1 Sv=1×10~6 m~3/s), while in the boreal summer(from June to August), the average transport is 0.69 Sv. Moreover, the average transport from January 2009 to December2014 is –0.74 Sv(the positive/negative value indicates northward/southward transport). May and September are the transition period. In May, the currents in the Karimata Strait turn northward, consistent with the local monsoon. In September, the southeasterly trade wind is still present over the strait, driving surface water northward, whereas the bottom flow reverses direction, possibly because of the pressure gradient across the strait from north to south.  相似文献   

4.
Internal wave propagation carries considerable vertical shear which can lead to turbulence and mixing. Based on the analysis of more than 2 500 synthetic aperture radar (SAR) and optical satellite images, the internal wave propagation in the whole South China Sea was investigated systematically. The results show that (1) in the northeastern South China Sea, most internal waves propagate westward from the Luzon Strait and are diffracted by coral reefs near the Dongsha Islands. Some impinge onto the shelf and a few are reflected; (2) in the northwestern South China Sea, most internal waves are generated at the shelf and propagate northwestward or westward to the coast; (3) in the western South China Sea, most internal waves propagate westward to the Vietnamese coast, except a few propagate southward to the deep sea; and (4) in the southern South China Sea, most internal waves propagate southwestward to the coast. Some propagate southeastward to the coast of Kalimantan Island, and a few propagate southeastward because of the influence of the Mekong River.  相似文献   

5.
The unique survey in December 1998 mapped the entire western boundary area of the South China Sea(SCS),which reveals the three-dimensional structure and huge volume transport of the swift and narrow winter western boundary current of the SCS(SCSwwbc) in full scale. The current is found to flow all the way from the shelf edge off Hong Kong to the Sunda Shelf with a width around 100 km and a vertical scale of about 400 m. It appears to be the strongest off the Indo-China Peninsula, where its volume transport reached over 20×10~6 m~3/s. The current is weaker upstream in the northern SCS to the west of Hong Kong. A Kuroshio loop or detached eddy intruded through the Luzon Strait is observed farther east where the SCSwwbc no more exists. The results suggest that during the survey the SCSwwbc was fed primarily by the interior recirculation of the SCS rather than by the"branching" of the Kuroshio from the Luzon Strait as indicated by surface drifters, which is likely a near-surface phenomenon and only contributes a minor part to the total transport of the SCSwwbc. Several topics related to the SCSwwbc are also discussed.  相似文献   

6.
A nested circulation model system based on the Princeton ocean model(POM) is set up to simulate the currentmeter data from a bottom-mounted Acoustic Doppler Profiler(ADP) deployed at the 30 m depth in the Lunan(South Shandong Province,China) Trough south of the Shandong Peninsula in the summer of 2008,and to study the dynamics of the circulation in the southwestern Huanghai Sea(Yellow Sea).The model has reproduced well the observed subtidal current at the mooring site.The results of the model simulation suggest that the bottom topography has strong steering effects on the regional circulation in summer.The model simulation shows that the Subei(North Jiangsu Province,China)coastal current flows northward in summer,in contrast to the southeastward current in the center of the Lunan Trough measured by the moored currentmeter.The analyses of the model results suggest that the southeastward current at the mooring site in the Lunan Trough is forced by the westward wind-driven current along the Lunan coast,which meets the northward Subei coastal current at the head of the Haizhou Bay to flow along an offshore path in the southeastward direction in the Lunan Trough.Analysis suggests that the Subei coastal current,the Lunan coastal current,and the circulation in the Lunan Trough are independent current systems controlled by different dynamics.Therefore,the current measurements in the Lunan Trough cannot be used to represent the Subei coastal current in general.  相似文献   

7.
On the basis of hydrographic data obtained in November 28 to December 27, 1998 cruise, the calculation of the circulation in the South China Sea (SCS) is made by using the P-vector method, in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of winter circulation in the SCS, the diagnostic model (Yuan et al., 1982; Yuan and Su, 1992) is used to simulate numerically the winter circulation in the SCS. The following results have been obtained. (1) The main characteristics of the circulation systems in the central SCS are as follows: A coastal southward jet in winter is present at the western boundary near the coast of Vietnam; there is a stronger cyclonic circulation with a larger horizontal scale east of this coastal southward jet and west of 114°E; there is a weaker anti-cyclonic circulation in the central part of eastern SCS; there is a stronger and northeastward flow opposing the northeasterly monsoon between above a stronger cyclonic c  相似文献   

8.
On the basis of the CTD data obtained within the Bering Sea shelf by the Second to Sixth Chinese National Arctic Research Expedition in the summers of 2003, 2008, 2010, 2012 and 2014, the classification and interannual variation of water masses on the central Bering Sea shelf and the northern Bering Sea shelf are analyzed. The results indicate that there are both connection and difference between two regions in hydrological features. On the central Bering Sea shelf, there are mainly four types of water masses distribute orderly from the slope to the coast of Alaska: Bering Slope Current Water(BSCW), MW(Mixed Water), Bering Shelf Water(BSW) and Alaska Coastal Water(ACW). In summer, BSW can be divided into Bering Shelf Surface Water(BSW_S) and Bering Shelf Cold Water(BSW_C). On the northern Bering Sea shelf near the Bering Strait,it contains Anadyr Water(AW), BSW and ACW from west to east. But the spatial-temporal features are also remarkable in each region. On the central shelf, the BSCW is saltiest and occupies the west of 177°W, which has the highest salinity in 2014. The BSW_C is the coldest water mass and warmest in 2014; the ACW is freshest and mainly occupies the east of 170°W, which has the highest temperature and salinity in 2012. On the northern Bering Sea shelf near the Bering Strait, the AW is saltiest with temperature decreasing sharply compared with BSCW on the central shelf. In the process of moving northward to the Bering Strait, the AW demonstrates a trend of eastward expansion. The ACW is freshest but saltier than the ACW on the central shelf,which is usually located above the BSW and is saltiest in 2014. The BSW distributes between the AW and the ACW and coldest in 2012, but the cold water of the BSW_C on the central shelf, whose temperature less than 0°C, does not exist on the northern shelf. Although there are so many changes, the respond to a climate change is synchronized in the both regions, which can be divided into the warm years(2003 and 2014) and cold years(2008, 2010 and 2012). The year of 2014 may be a new beginning of warm period.  相似文献   

9.
Seasonal variations of phytoplankton/chlorophyll-a (Chl-a) distribution, sea surface wind, sea height anomaly, sea surface temperature and other oceanic environments for long periods are analyzed in the South China Sea (SCS), especially in the two typical regions off the east coast of Vietnam and off the northwest coast of Luzon, using remote sensing data and other oceanographic data. The results show that seasonal and spatial distributions of phytoplankton biomass in the SCS are primarily influenced by the monsoon winds and oceanic environments. Off the east coast of Vietnam, Chl-a concentration is a peak in August, a jet shape extending into the interior SCS, which is associated with strong southwesterly monsoon winds, the coastal upwetling induced by offshore Ekman transport and the strong offshore current in the western SCS. In December, high Chl-a concentration appears in the upwelling region off the northwest coast of Luzon and spreads southwestward. Strong mixing by the strong northeasterly monsoon winds, the cyclonic circulation, southwestward coastal currents and river discharge have impacts on distribution of phytoplankton, so that the high phytoplankton biomass extends from the coastal areas over the northern SCS to the entire SCS in winter. These research activities could be important for revealing spatial and temporal patterns of phytoplankton and their interactions with physical environments in the SCS.  相似文献   

10.
On the basis of hydrographic data obtained in August 2000 cruise, the circulation in the South China Sea (SCS) is computed by the modified inverse method in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of summer circulation in the SCS, the diagnostic model (Yuan et al. 1982. Acta Oceanologica Sinica,4(1):1-11; Yuan and Su. 1992. Numerical Computation of Physical Oceanography.474-542) is used to simulate numerically the summer circulation in the SCS. The following results  相似文献   

11.
通过一个全球的二维诊断模型,采用Levitus温盐资料和COADS风应力资料,并结合动力计算来研究南海上层环流的季节变化。计算结果与其它模式结果和观测结果非常相似。南海北部(南部)全年存在一气旋式(反气旋式)环流。在冬季气旋式环流几乎占据了整个南海,夏季则以反气旋式环流为主。泰国湾的环流在冬季(夏季)是气旋式的(反气旋的)。南海的西边界流有明显的季节变化,其在冬季从卡里马塔海峡流出南海,夏季部分西边界流从台湾海峡流出南海。越南离岸流在春季就开始出现,其位置比夏季的越南离岸流的位置偏北。  相似文献   

12.
南海的季节环流─TOPEX/POSEIDON卫星测高应用研究   总被引:57,自引:8,他引:49  
应用1992~1996年的TOPEX/POSEIDON卫星高度计遥感资料,研究了冬、夏季风强盛期多年平均的南海上层环流结构。研究结果表明,南海上层流结构呈明显的季节变化,在很大程度上受该海区冬、夏交替的季风支配。冬季总环流呈气旋型,并发育有两个次海盆尺度气旋型环流;夏季总环流大致呈反气旋型、但在南海东部18°N以南海域未见明显流系发育。研究还表明,南海环流的西向强化趋势明显,无论冬、夏在中南半岛沿岸和巽他陆架外缘均存在急流,其流向冬、夏相反,是南海上层环流中最强劲的一支。鉴于该海流的动力特征与海洋动力学中定义的漂流不同,有相当大的地转成分,建议称为“南海季风急流(South China Sea MonsoonJet)”.冬季南下的季风急流在南海南部受巽他陆架阻挡折向东北,沿加里曼丹岛和巴拉望岛外海有较强东北向流发育。夏季北上的季风急流在海南岛东南分为两支:北支沿陆架北上,似为传统意义上的南海暖流;南支沿18°N向东横穿南海后折向东北;二者之间(陆架坡折附近)为弱流区。两分支在汕头外海汇合后,南海暖流流速增强。就多年平均而言,黑潮只在冬季侵入南海东北部,并在南海北部诱生一个次海盆尺度的气旋型环流,这时南海暖流只出现在汕头以东海域.夏季南海北部完全受东北向流控制,未见黑潮入侵迹象.用卫星跟踪海面漂流浮标观测进行的对比验证表明,以上遥感分析结果与海上观测一致。  相似文献   

13.
南海上升流研究概述   总被引:39,自引:3,他引:39  
吴日升  李立 《台湾海峡》2003,22(2):269-277
本文对近40a来南海上升流研究结果进行了概述,重点介绍了南海北部陆架区上升流的时空分布特征,及其消长和形成机制等研究成果.这些研究成果揭示上升沈是整个南海北部陆架区夏季的普遍现象,具有南海海盆的空间尺度.引起南海北部陆架区夏季上升流存在的动力因素是盛行的西南季风.该上升流在空间和时间上的分布是不均一的,海南岛东北和闽、粤边界海域是上升流中心区;台湾浅滩周围的上升流呈多元结构,各上升流区海水的理化性质存在看明显差异;在粤东,上升流的影响可达沿海港湾内部,并支配看这些港湾的夏季水文条件.南海除了在其北部陆架区存在看夏季上升流外,夏季在越南东部沿岸和冬季在吕宋岛沿岸均存在看上升流。  相似文献   

14.
南海环流动力机制研究综述   总被引:40,自引:9,他引:31  
南海的环流复杂,但通过近20 a来的研究工作,国内外学者对此已取得了不少的成果.本文就南海环流框架性的问题,综述了有关的文献,认为对南海上层海洋三方面的环流分量的驱动机制已有了初步的认识.这三方面分别是:(1)准季节性风场;(2)黑潮向南海的净输运;(3)黑潮向南海的涡度平流输送.但是对这些驱动的时空变化仍相当不清楚.三者皆增强了南海北部的海盆尺度气旋式环流,其强化的西南向西边界流靠近东沙群岛,建议称为“东沙海流”.没有水文证据显示黑潮水是以分支形式进入南海,其向南海的输运也不可能主要通过中尺度涡过程,具体机制有待研究.每年在南海生成的中尺度涡平均约有10个,风场与沿岸地形所生成的强风应力旋度可能是其主要的驱动机制.作为框架性的认识,也有三方面的工作进行得较少,即:(1)吕宋海峡的上层水交换;(2)南海的中尺度涡生成机制,虽然强风应力旋度及前述的第三种环流驱动机制也有中尺度涡伴生;(3)自吕宋海峡进入的深层水对南海上层海洋环流的影响.  相似文献   

15.
It is generally accepted that the flow is northward in the Taiwan Strait during summer and that the strongest current is detected in the Penghu Channel between the Penghu Islands and the Taiwan Island. This current, the eastern prong flow, is made up of waters from the South China Sea (SCS) and the Kuroshio. North of the Penghu Islands, the current veers to the west before turning northward again because of the shallow Chang-Yuen Ridge, and extends westward off the coast of Taiwan. There is a second prong of northward flow existing between the Taiwan Bank and the China mainland coast. Here, we show with observational data as well as results from a numerical model that this water receives little influence from the Kuroshio and is distinctively cooler, fresher, less oxygenated and more acidic, and contains more dissolved inorganic carbon than waters at the same density level of the eastern prong. Evidence is provided to show that the source water of the western prong should be the subsurface water from the strong upslope advection flowing northward from the SCS to the southern Taiwan Strait and upwelling along the coast during the favorable southwesterly wind. Subsequently, the upwelled water flows over the saddle west of the Taiwan Bank and joins the main flow northwest of the Penghu Islands.  相似文献   

16.
Numerical Study of the Upper-Layer Circulation in the South China Sea   总被引:7,自引:0,他引:7  
Upper-layer circulation in the South China Sea has been investigated using a three-dimensional primitive equation eddy-resolving model. The model domain covers the region from 99° to 122°E and from 3° to 23°N. The model is forced by the monthly averaged European Centre for Medium-Range Weather Forecasts (ECMWF) model winds and the climatological monthly sea surface temperature data from National Oceanographic Data Center (NODC). Inflow and outflow through the Taiwan Strait and the Sunda shelf are prescribed monthly from the Wyrtki estimates. Inflow of the Kuroshio branch current in the Luzon Strait is assumed to have a constant volume transport of 12 Sv (1 Sv = 106 m3/s), and the outflow from the open boundary to the east of Taiwan is adjusted to ensure the net volume transport through all open boundaries is zero at any instant. The model reveals that a cyclonic circulation exists all year round in the northern South China Sea. During the winter time this cyclonic eddy is located off the northwest of Luzon, coinciding with the region of positive wind stress curl in this season. This cyclonic eddy moves northward in spring due to the weakening of the northeast winds. The cyclonic circulation becomes weak and stays in the continental slope region in the northern South China Sea in the summer period. The southwest wind can raise the water level along the west coast of Luzon, but there is no anticyclonic circulation in the northern South China Sea. After the onset of the northeast monsoon winds in fall, the cyclonic eddy moves back to the region off the west coast of Luzon. In the southern South China Sea and off the Vietnam coast, the model predicts a similar flow structure as in the previous related studies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
1998年春夏南海温盐结构及其变化特征   总被引:11,自引:2,他引:11  
利用1998年5~8月“南海季风试验”期间“科学1”号和“实验3”号科学考察船两个航次CTD资料,分析了1998年南海夏季风暴发前后南海主要断面的温盐结构及其变化特征.观测发现,南海腹地基本被典型的南海水团所控制,但在南海东北部尤其是吕宋海峡附近,表层和次表层水明显受到西太平洋水的影响.季风暴发以后,南海北部表面温度有显著升高,升幅由西向东递减,而南海中部和南部表面温度基本没变,这使得南海北部东西向温度梯度和整个海盆南北向温度梯度均减小.北部断面表层盐度普遍由34以上降低到34以下,混合层均有所发展,是季风暴发后降水和风力加剧的结果.观测期间黑潮水跨越吕宋海峡的迹象明显但变化剧烈.4~5月,黑潮次表层水除在吕宋海峡中北部出现外,在吕宋岛以西亦有发现,表明有部分黑潮水从吕宋海峡南端沿岸向西进而向南进入南海.6~7月,次表层高盐核在吕宋海峡中北部有极大发展,但在吕宋岛以西却明显萎缩;虽然看上去黑潮水以更强的流速进、出南海,但对南海腹地动力热力结构的影响未必更大.一个超过34.55的表层高盐水体于巴拉望附近被发现,似与通过巴拉望两侧水道入侵南海的西太平洋水有关.  相似文献   

18.
1998年夏季季风爆发前后南海环流的多涡特征   总被引:10,自引:0,他引:10  
利用南海季风实验(SCSMEX-IOP1、IOP2)期间(1998年4月底-7月初)所获得的温盐深(CTD)、声学多普勒流速剖面仪(ADCP)资料及TOPEX/POSEIDON卫星高度计遥感资料,分析了南海表层、1.0MPa层和3.0MPa层得力势异常场的分布格局,探讨了夏季季风爆发前后南海的环流特征。结果表明:在夏季季风爆发前(IOP1期间)南海北部以气旋试流动为主,并在此气旋式环流的东部镶嵌着一个较小的反气旋型涡;南海中部和南部以反气旋式流动为主,其中越南以东海域存在着两个南北对峙分布的反气旋型涡,在它们的东侧伴随一气旋型涡。季风爆发后(IPO2期间),南海北部仍然以气旋式流动为主,黑潮水越过巴士海峡南北中线,一部分可能入侵南海北部,另一部分向东北折回黑潮主干;南海中部和南部仍以反气旋式流动为主,越南以东海域北部的反气旋型涡消失,但南西的反气旋型涡加强,与IOP1类似,仍伴随着一个气旋型涡。总体而方,强流区出现在巴士海峡西北侧和南海西部(尤其是越东南东沿岸),南海东部和东南部为弱流区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号