首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
Immediately following a spill at sea, released oil—ranging from diesel to light crude and diluted bitumen, will initially weather through evaporation, resulting in an elevated concentration of light hydrocarbons in the air. As part of oil spill response operations, first responders use hand-held devices to monitor airborne concentrations when approaching a spill. The feasibility of using numerical modelling as an additional tool to assess potential flammability and plan response operations in the spill area was explored in this study. The Lower Explosive Limit(LEL) is defined as the minimum concentration of a gas in air, in this case a mixture of evaporated hydrocarbons, which can produce a flash fire in the presence of an ignition source. This ignition source could be triggered by the vessel itself or by spill response operations. A framework was put into place, utilizing a threedimensional hydrodynamic model(H3D), an oil spill model(SPILLCALC), and an air dispersion model(CALPUFF) to assess the risk of possible ignition of the hydrocarbon vapour in the event of a spill. The study looked at a hypothetical credible worst case tanker spill(16 500 m~3) of diluted bitumen(cold lake winter blend)occurring at Arachne Reef in Haro Strait, British Columbia, Canada. SPILLCALC provided one-minute averaged vapour fluxes from the water surface for each of 17 modelled pseudo-components which were used as inputs to CALPUFF. Using the predicted airborne concentrations of each pseudo-component, time-scaled to one-second averages, the flammability potential in the immediate spill area was determined at each grid point using Le Chatelier's mixing equation. The approach describe here was developed as a proof of concept, and could be established as a real-time system, bringing valuable information in addition to hand-held devices during a spill response, or during a response exercise. This modelling study was conducted as part of Kinder Morgan's Trans Mountain Pipeline Expansion Project. There are a number of commercially available oil spill models but few if any are equipped with the ability to model air dispersion and forecast hazardous conditions as discussed in this paper.  相似文献   

2.
The key point for rational allocation of emergency resources is to match the oil spill response capacity with the risk of oil spill. This paper proposes an innovative risk-based model for quantitative regional emergency resource allocation, which comprehensively analyzes the factors such as oil spill probability, hazard consequences, oil properties, weathering process and operation efficiency, etc. The model calculates three major resources, i.e., mechanical recovery, dispersion and absorption, according to the results of risk assessment. In a field application in Xiaohu Port, Guangzhou, China, and the model achieved scientific and rational allocation of emergency resources by matching the assessed risk with the regional capacity, and allocating emergency resources according to capability target. The model is considered to be beneficial to enhancing the resource efficiency and may contribute to the planning of capacity-building programs in high-risk areas.  相似文献   

3.
Wang  Kun  Du  Jing  Liu  Ming  Wu  Jin-hao  Jiang  Heng-zhi  Jin  Sheng  Song  Lun 《中国海洋工程》2019,33(2):185-197
The Bohai Sea is a seasonal icy sea area that has the lowest latitude of any sea experiencing icing in the northern hemisphere, and simulation studies on oil spills during its sea ice period are the key to analyzing winter oil spill accidents. This study applied the three-dimensional free surface to establish a high-resolution hydrodynamic model and simulate tidal distributions in the Bohai Sea. Then, the oil spill model of the open sea area and thermodynamic model were combined to establish a numerical model for the Bohai oil spill during the winter sea ice period. The hydrodynamic model and sea ice growth and melting model were verified, and the parameters were adjusted based on the measured values, which indicate that the numerical model established in this paper is of high accuracy,stability and ubiquity. Finally, after checking the calculations repeatedly, the diffusion coefficient for the Bohai Sea was determined to be 1.0×10~(–7 )m~2/s. It is better that the comprehensive weathering attenuation coefficient is lower than that of a non-winter oil spill, with 1.3×10~(–7 )m~2/s being the most appropriate coefficient. This study can provide the reliable technical support for the operational safety and reduction in losses caused by winter oil spill accidents for the petroleum industry.  相似文献   

4.
An analysis of the radar backscattering from the ocean surface covered by oil spill is presented using a microwave scattering model and Monte-Carlo simulation. In the analysis, a one-dimensional rough sea surface is numerically generated with an ocean waveheight spectrum for a given wind velocity. A two-layered medium is then generated by adding a thin oil layer on the simulated rough sea surface. The electric fields backscattered from the sea surface with two-layered medium are computed with the method of moments (MoM), and the backscattering coefficients are statistically obtained with N independent samples for each oil-spilled surface using the Monte-Carlo technique for various conditions of surface roughness, oil-layer thickness, frequency, polarization and incidence angle. The numerical simulation results are compared with theoretical models for clean sea surfaces and SAR images of an oil-spilled sea surface caused by the Hebei (Hebei province, China) Spirit oil tanker in 2007. Further, conditions for better oil spill extraction are sought by the numerical simulation on the effects of wind speed and oil-layer thickness at different incidence angles on the backscattering coefficients.  相似文献   

5.
海上溢油极化特征及其探测研究   总被引:3,自引:3,他引:0  
The SAR(Synthetic Aperture Radar) has the capabilities for all-weather day and night use. In the case of determining the effects of oil spill dumping, the oil spills areas are shown as dark spots in the SAR images.Therefore, using SAR data to detect oil spills is becoming progressively popular in operational monitoring, which is useful for oceanic environmental protection and hazard reduction. Research has been conducted on the polarization decomposition and scattering characteristics of oil spills from a scattering matrix using allpolarization of the SAR data, calculation of the polarization parameters, and utilization of the CPD(Co-polarized Phase Difference) of the oil and the sea, in order to extract the oil spill information. This method proves to be effective by combining polarization parameters with the characteristics of oil spill. The results show that when using Bragg, the oil spill backscattering machine with Enopy and a mean scatter α parameter. The oil spill can be successfully identified. However, the parameter mechanism of the oil spill remains unclear. The use of CPD can easily extract oil spill information from the ocean, and the polarization research provides a base for oil spill remote sensing detection.  相似文献   

6.
Microwave remote sensing is one of the most useful methods for observing the ocean parameters. The Doppler frequency or interferometric phase of the radar echoes can be used for an ocean surface current speed retrieval,which is widely used in spaceborne and airborne radars. While the effect of the ocean currents and waves is interactional. It is impossible to retrieve the ocean surface current speed from Doppler frequency shift directly. In order to study the relationship between the ocean surface current speed and the Doppler frequency shift, a numerical ocean surface Doppler spectrum model is established and validated with a reference. The input parameters of ocean Doppler spectrum include an ocean wave elevation model, a directional distribution function, and wind speed and direction. The suitable ocean wave elevation spectrum and the directional distribution function are selected by comparing the ocean Doppler spectrum in C band with an empirical geophysical model function(CDOP). What is more, the error sensitivities of ocean surface current speed to the wind speed and direction are analyzed. All these simulations are in Ku band. The simulation results show that the ocean surface current speed error is sensitive to the wind speed and direction errors. With VV polarization, the ocean surface current speed error is about 0.15 m/s when the wind speed error is 2 m/s, and the ocean surface current speed error is smaller than 0.3 m/s when the wind direction error is within 20° in the cross wind direction.  相似文献   

7.
Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoon No. 8114 is chosen because it was very strong, and generated high waves in the Estuary. WW3 was implemented for the East China Sea coarse-resolution computational domain, to simulate the waves over a large spatial scale and provide boundary conditions for SWAN model simulations, implemented on a fine-resolution nested domain for the Yangtze Estuary area. The Takahashi wind model is applied to the simulation of the East China Sea scale (3-hourly) and Yangtze Estuary scale (1-hourly) winds. Simulations of significant wave heights in the East China Sea show that the highest waves are on the right side of the storm track, and maxima tend to occur at the eastern deep-water open boundary of the Yangtze Estuary. In the Yangtze Estuary, incoming swell is dominant over locally generated waves before the typhoon approaches the Estuary. As the typhoon approaches the Estuary, wind waves and swell coexist, and the wave direction is mainly influenced by the swell direction and the complex topography.  相似文献   

8.
One of the challenges in effluent transport modeling in coastal tidal environments is the proper specification of initial dilution in connection with the far-field transport phenomena. An approach of external linkage of far-field and near-field effluent transport models is presented, and applied to simulating the effluent transport in the Port Angeles Harbor, Washington in the Strait of Juan de Fuea. A near-field plume model was used to calculate the effluent initial dilution and a three-dimensional (3-D) hydrodynamic model was developed to simulate the tidal circulation and far-field effluent transport in the Port Angeles Harbor. The hydrodynamic model was driven by tides and surface winds. Observed water surface elevation and velocity data were used to calibrate the model over a period covering the neap-spring tidal cycle. The model was also validated with observed surface drogue trajectory data. The model successfully reproduced the tidal dynamics in the study area and good agreements between model results and observed data were obtained. It is demonstrated that the linkage between the near-field and far-field models in effluent transport modeling can be achieved through iteratively adjusting the model grid sizes such that the dilution ratio and effluent concentration in the circulation model grid cell match the concentration calculated by the near-field plume model.  相似文献   

9.
The peaks over threshold(POT) methods are used for the univariate and multivariate extreme value analyses of the wave and wind records collected from a hydrometric station in the South China Sea. A new multivariate POT method: Multivariate GPD(MGPD) model is proposed, which can be built easily according to developed parametric models and is a natural distribution of multivariate POT methods. A joint threshold selection approach is used in the MGPD model well. Finally, sensitivity analyses are carried out to calculate the return values of the base shear, and two declustering schemes are compared in this study.  相似文献   

10.
Sediment transport in the Hangzhou Bay is extremely complicated due to its bathymetry and hydrodynamic conditions. The ECOMSED model is employed to simulate three-dimensional (3-D) cohesive sediment transport in Hangzhou Bay. Dynamical factors such as Coriolis force, tides, salinity, river discharges, and waves are considered in the model. The wave parameters, including the significant wave height, period, and direction, are calculated with the SWAN model. The Grant-Madsen model is introduced for the bed shear stress due to the combined effect of waves and currents. The formulation of bed shear stress used to calculate the sink/source terms is modified based on previous research that sufficiently validated the formulation with measurement data. The integrated model of the above-mentioned models is applied to simulate sediment transport in Hangzhou Bay. The results of the simulation agree well with field observations concerning the distribution of suspended sediment, indicating that the sediments are remarkably suspended in Hangzhou Bay under the action of waves and currents.  相似文献   

11.
同化技术在渤海溢油应急预报系统中的应用   总被引:3,自引:1,他引:2  
李燕  朱江  王辉  林彩燕 《海洋学报》2014,36(3):113-120
溢油应急预报对溢油事故现场处理具有重要指导意义。国内外已开展大量溢油数值预报技术研究,但由于各类误差的引入(尤其风和流数值预报误差的引入)以及模型本身的不完善等各种原因导致溢油数值预报无法满足日益提高的溢油预报精度需求。随着现场观测技术和监测水平的提高,如何充分利用实时观测数据提高业务化溢油应急预报精度,并满足应急预报迅速快捷的要求,成为目前业务化溢油应急预报的首要问题。国家海洋环境预报中心于2008年实现了渤海溢油业务化预报系统的建立和业务化应用,本文针对当前渤海溢油业务化应急预报中存在的现实问题,利用已有渤海海上5个石油平台从2010年1月至2011年2月的风场观测数据,初步开展最优插值方法(optimal interpolation assimilation method,OI)同化技术在国家海洋环境预报中心渤海溢油应急预报系统风场订正的应用研究。本文采用交错订正方法,确定了OI同化技术中相关尺度因子的选取,从而实现在这5个观测站地理分布情况下,OI同化技术应用中参数的最优化,之后在理想实验和实际案例的应用中,该同化方法明显提高渤海溢油预报精度。本文为如何进一步利用同化方法迅速快捷地实现溢油应急预报精度的提高提供了一定研究基础。  相似文献   

12.
海上溢油数值模型研究进展   总被引:1,自引:0,他引:1  
我国是海洋大国,近年来,海上活动持续增多,发生海上溢油事故的风险随之加大,海上溢油污染事故一旦发生,如不得到及时控制,必将严重损害我国近海海洋环境。为了完善我国海上溢油应急反应体系,提高我国处理重大海上溢油事故的应急反应能力,海上溢油污染应急技术研究已经得到开展。本文综述了溢油预测模型的发展过程以及相关的研究成果,包括:溢油扩展模型、溢油漂移模型、油粒子模型和溢油风化模型等。这为进一步开展溢油预测和溢油污染应急工作提供了理论依据和参考。  相似文献   

13.
文章以假设发生在南海北部深水油气勘探开发海域的1 279 m深水井喷溢油事故为例,采用深海溢油输移扩散模型,以2020年冬季(1月)和夏季(7月)三维流场和海面风场为主要环境动力,数值模拟研究未实施和实施海底消油剂处理情景下的溢油在海洋环境中的输移扩散全过程。模拟结果显示:不同深度的海流对溢油输移轨迹有着显著的影响;深水环境中,流速较小,井喷形成的浮射流能够向上输移较长距离;随着水深变浅,流速增强,流向多变,水中不同粒径的油滴以摇摆或螺旋轨迹向上浮升;在表层海流和冬季或夏季盛行风的共同作用下,海面油膜主要往下风向方向漂移扩散;实施海底消油剂处理措施后,水中油滴扩散范围较未处理时的更大,其中微小粒径油滴将在深水环境中长时间悬浮输移。结果可为今后南海深海溢油输移扩散规律的深入研究提供参考。  相似文献   

14.
蓬莱19-3 油田事故溢油数值模拟   总被引:2,自引:0,他引:2  
利用FVCOM(Finite-volume coastal ocean numerical model)数值模型和MM5风场预报模式,在对渤海海域水动力场进行数值模拟的基础上,基于"油粒子"的欧拉-拉格朗日跟踪法和随机走动原理,并考虑风对溢油油膜漂移扩散的直接作用,建立了海洋溢油油膜漂移轨迹和扩散的数值预测模型。利用建立的模型对2011年6月蓬莱19-3油田事故溢油进行了数值模拟,模拟结果与RADARSAT卫星遥感监测数据相吻合。研究结果表明:在渤海中部地区夏季事故溢油模拟预测中,风漂移因子取0.024最为合理,模型可用于渤海蓬莱19-3油田附近事故溢油轨迹和扩散的快速预报,从而为该区域的溢油事故应急响应提供科学依据。  相似文献   

15.
Bohai Sea oil spill model: a numerical case study   总被引:2,自引:0,他引:2  
An operational Bohai Sea oil spill serving module (BSOSSM) that can provide users with trajectory and movement information of the released oil is developed for the purpose of informing mitigation of oil spill incidents in the Bohai Sea, China. BSOSSM is one of the serving modules that had been integrated in China digital ocean prototype system, a marine information platform for managing, displaying and disseminating all the data investigated by China 908 Program. The oil spill trajectory is calculated by an oil spill model (OSM), which serves as a component in BSOSSM. The impacts of wind, current, as well as Stokes drift on oil spill trajectory are studied by sensitivity experiments conducted using OSM. Simulation results indicate that wind forcing is the most important factor in controlling the oil trajectory at the sea surface in Bohai Sea, whereas current and Stokes drift play relatively less important roles. However, because the direction of waves generally follows that of the wind, Stokes drift does lead to an increase in oil drift and spreading velocity. Case studies of the Penglai 19-3 oil spill incident (June 2011) and Xingang oil spill (April 2005) demonstrate that OSM can generally reproduce the oil spreading, and is therefore capable of supporting the emergency response of future oil spills in the Bohai Sea through BSOSSM.  相似文献   

16.
全极化SAR图像中溢油极化特征研究   总被引:2,自引:1,他引:1  
相比于单极化SAR图像,全极化SAR图像不仅能体现海面目标的几何特征、后向散射特征,还能体现目标的极化特征。因此,在溢油检测方面,极化SAR更具优势。特征提取作为溢油检测的关键步骤,直接影响到溢油检测的精度。在本文中,我们分析了全极化SAR图像中海面溢油的极化特征,如极化散射熵、平均散射角等。并提出了新的极化特征P,该特征参数能够反映海面目标电磁散射过程中布拉格散射机制和镜面散射机制的比例。为了研究极化特征溢油检测的能力,本文基于SIR-C/X-SAR和Radarsat-2全极化SAR图像开展了相关实验,并对比分析了溢油的多种极化特征。实验结果显示,在中低风速情况下,C波段溢油探测效果优于L波段;本文提出的极化特征P对海面散射机制敏感;基准高度和特征参数P在C波段比其他极化特征更适于溢油检测。  相似文献   

17.
2011年6月-8月渤海湾溢油事故长期后报数值模拟   总被引:1,自引:1,他引:0  
三维业务化溢油应急预报系统不仅能提供逐时的海洋环境信息预报和溢油漂移扩散,还能对溢油事件进行后报数值模拟。2011年6月4日在渤海湾蓬莱19-3B采油平台发生溢油事件,同月17日19-3C平台也发生溢油事件。此次溢油事故造成了数千平方公里海水受污染。本文采用国家海洋环境预报中心自主研发的溢油模型对蓬莱19-3溢油事件进行长期后报数值模拟,在风流海洋环境场的驱动下,模拟了2016年6月到2016年8月,两个平台溢油的漂移扩散情况、影响范围,靠岸时间和影响岸段等。风场采用基于WRF模型模拟得到的再分析风场,并用实测风对再分析风场进行订正,流场采用基于POM模式在再分析风场驱动下得到的海流。后报结果显示,溢油主要向西北方向漂移,并最终靠岸,其扫过的海域也主要在平台的西北方向,这与观测结果一致,验证了后报的可靠性。  相似文献   

18.
基于MIKE SA溢油模块,以燃料油为油种,建立了厦门西港海域溢油模型,模拟静风、主导风向(东北东风)和不利风向(西南风)3种风场条件下,一个潮周期内涨急、高潮、落急和低潮4个时段发生10 t溢油后油膜的漂移路径和影响范围.结果显示,发生在厦门西港海域的溢油在海面的漂移过程主要受潮流和风的影响,其中潮流起着主导作用.不同风向条件下,24 h内油膜的影响范围不同,静风条件下溢油浓度超一类(或二类,≥0.05 mg/dm3)、超三类(≥0.30 mg/dm3)和超四类(≥0.50 mg/dm3)的总影响面积分别为31.33、19.63和11.74 km2;主导风向条件下溢油浓度超一类(或二类)、超三类和超四类的总影响面积分别为99.62、69.01和8.99 km2;不利风向溢油浓度超一类(或二类)、超三类和超四类的总影响面积分别为8.38、5.05和2.10 km2.该预测结果可给出溢油事故发生后的影响范围、影响程度和影响敏感目标的时间,可为溢油事故应急决策的制定及溢油损害评估提供科学决策和支持,提升厦门海域环境风险管理应急能力建设.  相似文献   

19.
为深入认识深海溢油输运过程和提高深海溢油事故的应急响应能力,文章以2010年墨西哥湾“深水地平线”事故为例,采用深海溢油输移扩散模型,以三维流场和海面风场为主要环境动力,数值模拟溢油深海泄漏后的浮射扩散、水体中输移扩散以及在风场和流场共同作用下在海面上输移扩散的全过程,同时模拟实施海底消油剂喷注处理措施后溢油输移轨迹和扩散范围的变化。研究结果表明:数值模拟结果与相关报道的悬浮油带实际观测结果以及美国国家海洋与大气管理局的海水异常遥感监测结果总体相符,可为更加全面和精细的深海溢油输移扩散数值模拟研究奠定良好的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号