首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Marine Chemistry》2002,77(1):23-41
Chromophoric dissolved organic matter (CDOM) is the light absorbing fraction of dissolved organic carbon (DOC). The optical properties of CDOM potentially permit remote sensing of DOC and CDOM, and correction for CDOM absorption is essential for remote sensing of chlorophyll a (chl a) in coastal and estuarine waters. To provide data for this purpose, we report the distributions of CDOM, DOC, and chl a from seven cruises in Chesapeake Bay in 1994–1997. We observed non-conservative distributions of chl a and DOC in half of the cruises, indicating net accumulations within the estuary; however, there were no net accumulations or losses of CDOM, measured as absorption at 355 nm or as fluorescence. Freshwater end member CDOM absorption varied from 2.2 to 4.1 m−1. Coastal end member CDOM absorption was considerably lower, ranging over 0.4–1.1 m−1. The fluorescence/absorption ratio was similar to those reported elsewhere for estuarine and coastal waters; however, in the lower salinity/high CDOM region of the Bay, the relationship was not constant, suggestive of the mixing of two or more CDOM sources. Chl a was not correlated with the absorption for most of the cruises nor for the data set as a whole; however, CDOM and DOC were significantly correlated, with two groups evident in the data. The first group had high CDOM concentrations per unit DOC and corresponded to the conservative DOC values observed in the transects. The second group had lower CDOM concentrations per unit DOC and corresponded to the non-conservative DOC values associated with net DOC accumulation near the chl a maximum on the salinity gradient. This indicates the production of non-chromophoric DOC in the region of the chl a maximum of Chesapeake Bay. In terms of remote sensing, these data show that (1) the retrieval of the absorption coefficient of CDOM from fluorescence measurements in the Bay must consider the variability of the fluorescence/absorption relationship, and (2) estimates of DOC acquired from CDOM absorption will underestimate DOC in regions with recent, net accumulations of DOC.  相似文献   

2.
In this study, the CDOM absorption coefficient at 350 nm [aCDOM(350)] and CDOM excitation emission matrix (EEM) fluorescence were used to estimate annual fluxes of dissolved organic carbon (DOC) from the Cape Fear River to Long Bay in the South Atlantic Bight. Water samples were collected during a 3.5 year period, from October 2001 through March 2005, in the vicinity of the Cape Fear River (CFR) outlet and adjacent Onslow Bay (OB). Parallel factor analysis (PARAFAC) of CDOM EEM spectra identified six components: three terrestrial humic-like, one marine humic-like and two protein-like. Empirical relationships were derived from the PARAFAC model between DOC concentration and aCDOM(350), total fluorescence intensity and the intensities of respective EEM components. DOC concentration and CDOM optical parameters were very well correlated and R2 values ranged from 0.77 to 0.90. Regression analyses revealed that the non-absorbing DOC fraction, in DOC concentration estimated from CDOM optical parameters, varied with the qualitative composition of the CDOM. DOC concentration and intensity of the humic-like CDOM components characterized by excitation maxima at longer wavelengths have significantly higher estimated non-absorbing DOC compared to the analogous relationships between DOC and intensity of the humic-like CDOM components characterized by excitation maxima at shorter wavelengths. The relationships between DOC concentration and intensity of one of the protein-like components resulted in significantly reduced non-absorbing DOC fraction in DOC concentration estimation. Results of regression analyses between fluorescence intensities of specific EEM components and CDOM-specific absorption coefficients suggest that the relative proportion of humic-like CDOM components (characterized by excitation maximum at longer wavelengths) and the main protein-like component have the most impact on the values of a?CDOM(350). Based on the relationships between aCDOM(350), Cape Fear River flow, and DOC concentrations, DOC fluxes were estimated for 2002, 2003 and 2004. DOC fluxes varied from 1.5 to 6.2 × 1010 g C yr? 1, depending on river flow.  相似文献   

3.
Chromophoric dissolved organic matter (CDOM), as the light absorbing fraction of bulk dissolved organic matter (DOM), plays a number of important roles in the global and local biogeochemical cycling of dissolved organic carbon (DOC) and in controlling the optical properties of estuarine and coastal waters. Intertidal areas such as salt marshes can contribute significant amounts of the CDOM that is exported to the ocean, but the processes controlling this CDOM source are not well understood. In this study, we investigate the production of DOM and CDOM from the decomposition of two salt marsh cordgrasses, Spartina patens, a C4 grass, and Typha latifolia, a C3 grass, in well-controlled laboratory experiments. During the seven-week incubation period of the salt marsh grasses in oxic and anoxic seawater, changes in dissolved organic carbon (DOC) concentrations, dissolved nitrogen (DN) concentrations, stable carbon isotopic composition of DOC (DOC-δ13C), and CDOM fluorescence demonstrate a significant contribution of DOC and CDOM to estuarine waters from salt marsh plants, such as Spartina and Typha species. In the natural environment, however, the release processes of CDOM from different cordgrass species could be controlled largely by the in situ oxic and anoxic conditions present during degradation which affects both the production and decomposition of DOC and CDOM, as well as the optical properties of CDOM in estuarine and coastal waters.  相似文献   

4.
依据2017年8—9月对黄海海域溶解有机物(DOM)的调查,探讨了夏季黄海海水中溶解有机碳(DOC)和有色溶解有机物(CDOM)的空间分布特征。在表层海水中,受陆源影响较大的近岸海域CDOM含量相对较高,北黄海冷水团区域由于水产养殖的饵料引起DOC浓度升高,且该部分DOC以无色为主。DOC浓度随深度逐渐降低,而CDOM逐渐升高,该特征在冷水团区域更为显著,因此DOC和CDOM在冷水团区域的表底差异远大于浅水区的非冷水团区域。陆源输入和初级生产是引起表层DOC升高的主要原因,而光漂白则引起CDOM降低,同时光漂白还导致表层水体中CDOM分子量和芳香性低于底层。底层溶解氧饱和度在冷水团为80%~93%,均表现为弱不饱和状态。层化不仅阻碍了O2向底层水体输送,还抑制了DOC和CDOM的垂向混合,这是引起冷水团区域表底层DOC和CDOM差异较大的主要原因。  相似文献   

5.
Absorption and fluorescence of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) measurements were performed during three oceanographic surveys in 1994 in the southern Baltic Sea (Polish area of the Baltic Proper). DOC was measured both by high-temperature catalytic oxidation (HTCO) and low-temperature oxidation (LTO) conventional persulphate methods. CDOM fluorescence was shown to be highly correlated with absorption, with the same regression parameters, despite the seasonal change in different hydrographic conditions and the fluorescence quantum yield variations (1.23 ± 0.07 in April and 0.97 ± 0.12 in September). The results show a good correlation between the optical parameters and DOC although ˜ 70% of the DOC does not display significant absorption in the UV-visible range (350–750 nm). The non-absorbing DOC measured with HTCO method appears unaffected by seasonal changes. Consequently, total DOC can be predicted by optical methods using remote sensing techniques. The non-absorbing DOC measured by LTO method varies from 62% (April) to 76% (September), which implies that there is requirement for estimates on a seasonal basis.  相似文献   

6.
The absorption coefficient of chromophoric dissolved organic matter (aCDOM) has been found to be correlated with fluorescence emission (excitation at 355 nm). In the coastal European Atlantic area and in the Western Mediterranean Sea (Gulf of Lions), a significant statistical dependence has been found between aCDOM and fluorescence with dissolved organic carbon (DOC) concentration. The relationship shows that, in the river plume areas (Rhine in the North Sea and Rhône in the Gulf of Lions), a consistent fraction of DOC (from 40% to 60% of the average of the DOC measured) is non-absorbing in visible light range, where the dissolved organic matter (DOM) is typically absorbent. In comparison, in the open sea, apparently not affected by the continental inputs, the entire DOC belongs to the chromophoric DOM whose specific absorption is lower (5 to 10 times) than that found in the river plume areas.  相似文献   

7.
The retrieval of dissolved organic carbon (DOC) distribution by remote sensing is mainly based on the empirical relationship of DOC concentration and colored dissolved organic matter (CDOM) concentration in many literatures. To investigate the nature of this relationship, the distributions and mixing behaviors of DOC and CDOM are reviewed in the world’s major estuaries and bays. It is found that, generally, the CDOM concentration is well correlated with the salinity in most estuaries, while DOC usually shows a nonconservative behavior which leads to a weak correlation between the DOC concentration and the CDOM concentration. To establish a good satellite reversion of the DOC concentration, the East China Sea(ECS) was taken as an example, and the mixing behavior of DOC and CDOM as well as the influence of biogeochemical processes were analyzed except for the physical mixing process with the data from late autumn (November, 2010) and winter (December, 2009) cruises. In the two ECS cruises, the CDOM concentration was found to be tightly correlated with the salinity, influenced little by the photochemical or biological processes. The data from the winter cruise show that DOC followed a conservative mixing along the salinity gradient, while in the late autumn cruise it was significantly affected by the biological activities, resulting in a poor correlation between the DOC and the CDOM. Accordingly, an improved DOC algorithm (CSDM) was proposed: when the biological influence was significant (Chl a greater than 0.8 μg/dm3 ), DOC was retrieved by the conservative and biological model, and if the conservative mixing was dominant (Chl a less than 0.8 μg/dm3 ), the direct DOC concentration and CDOM concentration relationship was used. Based on the proposed algorithm, a reasonable DOC distribution for the ECS from satellite was obtained in this study, and the proposed method can be applied to the other large river-dominant marginal sea.  相似文献   

8.
The distribution and chemical properties of chromophoric dissolved organic matter (CDOM) in the Jiaozhou Bay, China were examined during four cruises in 2010-2011. The influence of freshwater and industrial and municipal sewage along the eastern coast of the bay was clearly evident as CDOM levels (defined as a 305 ), and dissolved organic carbon (DOC) concentrations were well correlated with salinity during all the cruises. Moreover, DOC concentrations were significantly correlated with chlorophyll a concentrations in the surface microlayer as well as in the subsurface water. The concentrations of DOC and CDOM displayed a gradually decreasing trend from the northwestern and eastern coast to the central bay, and the values and gradients of their concentrations on the eastern coast were generally higher than those on the western coast. In addition, CDOM and DOC levels were generally higher in the surface microlayer than in the subsurface water. In comparison with DOC, CDOM exhibited a greater extent of enrichment in the microlayer in each cruise, with average enrichment factor (E F ) values of 1.38 and 1.84, respectively. Four fluorescent components were identified from the surface microlayer and subsurface water samples and could be distinguished as peak A, peak T, peak B and peak M. For all the cruises, peak A levels were higher in the surface microlayer than in the subsurface water. This pattern of variation might be attributed to the terrestrial input.  相似文献   

9.
水体中有色可溶性有机物的研究进展   总被引:12,自引:0,他引:12  
有色可溶性有机物(CDOM)是水体中一类重要的光吸收物质,在短波的吸收大大降低了紫外辐射在水体的衰减,因而其光学行为和生物地球化学循环将对水体生态系统产生重要影响。CDOM在水体生态系统、水色遥感和全球碳循环研究中具有广阔的应用前景。文章综述了国内外CDOM研究现状与动态,其中包括CDOM的光吸收特性、荧光特性、光化学降解以及CDOM和DOC浓度的水色遥感,最后提出在内陆水体湖泊中开展CDOM研究的设想。  相似文献   

10.
The photoreactivity of chromophoric dissolved organic matter (CDOM) transported to Arctic shelf environments by rivers has only recently been studied and its quantitative role in Arctic shelf biogeochemistry has received little attention. Sunlight exposure experiments were performed on CDOM collected over a three year period (2002 to 2004) from river, estuary, shelf, and gulf regions of the Western Canadian Arctic. Decreases in CDOM absorption, synchronous fluorescence (SF), and dissolved organic carbon (DOC) concentration were followed after 3 days of exposure, and in two experiments, six optical cutoff filters were used to incrementally remove ultraviolet radiation incident on the samples. Apparent quantum yields for CDOM photobleaching (AQYble) and for DOC photomineralization (AQYmin) were computed, as were two AQY spectra (ble and min) for the Mackenzie River and a sample from the Mackenzie Shelf. The photoreactivity of Mackenzie River CDOM was highest after break-up and peak discharge and lowest in late summer. The half-lives of CDOM and DOC were estimated at 3.7 days and 4.8 days, respectively, when Mackenzie River water was exposed to full sunlight. Photobleaching of Mackenzie River CDOM fluorescence after most UV-B wavelengths were removed increased the correlation between the river and offshore waters in the Beaufort Sea. When light attenuation from particle- and CDOM-rich river water was considered for the Mackenzie Shelf, our photodegradation models estimated around 10% loss of absorption and < 1% DOC loss, suggesting that sunlight exposure does not substantially degrade CDOM on Arctic shelves.  相似文献   

11.
The variation of dissolved organic matter (DOM) and fluorescence characteristics during the phytoplankton bloom were investigated in Yashima Bay, at the eastern part of the Seto Inland Sea, Japan. We found significant accumulations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), chromophoric dissolved organic matter (CDOM) fluorescence, and UV260 during the phytoplankton bloom period in 2005, although lower accumulations of DOC and DON and only increases of CDOM fluorescence were observed during the bloom period in 2006. Little or no correlation between DOM and phytoplankton abundance might be due to the composition of DOM, which is a complex mixture of organic materials. The 3D-EEM results revealed that the DOM produced around the phytoplankton bloom period contained tyrosine, tryptophan, and humic-like substances. Our results showed that the occurrence of phytoplankton bloom contributed to the production of DOM in coastal water but the DOM accumulation depended on the type of phytoplankton bloom, the phytoplankton species in particular. From our results, we concluded that phytoplankton have a great role in the dynamics of DOM as a producer in a coastal environment.  相似文献   

12.
河口有色溶解有机物(colored dissolved organic matter,CDOM)的分布是各种物理-生物地球化学过程共同作用的结果。为实现河口高动态变化CDOM的监测,遥感是一种重要的手段。由珠江口四个不同季节的航次获得的实测数据,本文构建了一个遥感算法以反演CDOM在400 nm的吸收系数(aCDOM (400))。该算法使用以波段反射率比值Rrs (667)/Rrs (443)和Rrs (748)/Rrs (412)为自变量。将构建的算法应用于2002-2014年的MODIS/Aqua数据,本文计算了珠江口不同季节的aCDOM (400)气候态分布。CDOM的分布主要受珠江径流量和区域水下地形特征的影响。沿着垂直于水深梯度的断面,气候态aCDOM (400)呈指数减少(y=aebx,b<0),但不同季节差异很大。珠江口CDOM主要是河流淡水输运而来。其中,富里酸比例随盐度的增加而降低。基于构建的算法、CDOM保守混合方程和径流量,本文由MODIS/Aqua数据进一步估算了2002-2014年夏季和冬季珠江DOC的有效入海浓度和有效入海通量。珠江的有效入海浓度和有效入海通量都与流量存在正相关关系,且在夏季的相关性更明显,R2分别为0.698和0.9657。  相似文献   

13.
The distribution and optical absorption characteristics of chromophoric dissolved organic matter (CDOM) were systematically investigated along three meridional transects in the North Atlantic Ocean and Caribbean Sea conducted as part of the 2003 US CLIVAR/CO2 Repeat Hydrography survey. Hydrographic transects covered in aggregate a latitudinal range of 5° to 62° north along longitudes 20°W (line A16N, Leg 1), 52°W (A20), and 66°W (A22). Absorption spectra of filtered seawater samples were collected and analyzed for depths ranging from the surface to ∼6000 m, sampling all the ocean water masses in the western basin of the subtropical North Atlantic and several stations on the North and South American continental slopes. The lowest surface abundances of CDOM (< 0.1 m−1 absorption coefficient at 325 nm) were found in the central subtropical gyres while the highest surface abundances (∼0.7 m−1) were found along the continental shelves and within the subpolar gyre, confirming recent satellite-based assessments of surface CDOM distribution. Within the ocean interior, CDOM abundances were relatively high (0.1–0.2 m−1 absorption coefficient at 325 nm) except in the subtropical mode water, where a local minimum exists due to the subduction of low CDOM surface waters during mode water formation. In the subthermocline water masses of the western basin, changes in CDOM abundance are not correlated with increasing ventilation age as assessed using chlorofluorocarbon (CFC) concentrations and the atmospheric CFC history. But dissolved organic carbon (DOC) mass-specific absorption coefficients of CDOM increase with increasing ventilation age in the deep sea, indicating that CDOM is a refractory component of the DOC pool. The overall CDOM distribution in the North Atlantic reflects the rapid advection and mixing processes of the basin and demonstrates that remineralization in the ocean interior is not a significant sink for CDOM. This supports the potential of CDOM as a tracer of ocean circulation processes for subducted water masses.  相似文献   

14.
Dissolved organic matter (DOM) composition and dynamics in temperate shallow coastal bays are not well described although these bays may be important as local sources of organic carbon to ocean waters and are often sites of economically-important fisheries and aquaculture. In this study surface water samples were collected on a monthly to bi-monthly basis over two years from a mid-Atlantic coastal bay (Chincoteague Bay, Virginia and Maryland, USA). Dissolved organic carbon (DOC) concentrations and light absorbance characteristics were measured on sterile-filtered water, and high-molecular weight (> 1 kDa) dissolved OM (DOM) was isolated to determine stable isotope composition and molecular-level characteristics. Our time series encompassed both a drought year (2002) and a year of above-average rainfall (2003). During the dry year, one of our sites developed a very intense bloom of the brown tide organism Aureococcus anophagefferens while during the wet year there were brown tide bloom events at both of our sampling sites. During early spring of the wet year, there were higher concentrations of > 1 kDa DOC; this fraction represented a larger proportion of overall DOC and appeared considerably more allochthonous. Based upon colored dissolved organic matter (CDOM) and high-molecular weight DOM analyses, the development of extensive phytoplankton blooms during our sampling period significantly altered the quality of the DOM. Throughout both years Chincoteague Bay had high DOC concentrations relative to values reported for the coastal ocean. This observation, in conjunction with the observed effects of phytoplankton blooms on DOM composition, indicates that Chincoteague Bay may be a significant local source of “recently-fixed” organic carbon to shelf waters. Estimating inputs of DOC from Chincoteague Bay to the Mid-Atlantic Bight suggests that shallow productive bays should be considered in studies of organic carbon on continental shelves.  相似文献   

15.
长江口盐度梯度下不同形态碳的分布、来源与混合行为   总被引:1,自引:0,他引:1  
河口碳的生物地球化学过程是全球碳循环的重要组成。通过测定溶解无机碳(DIC)及其稳定同位素丰度(δ13CDIC),溶解有机碳(DOC),有色溶解有机物(CDOM),颗粒有机碳(POC)及其稳定同位素丰度(δ13CPOC)与元素比值(N/C)及相关指标,研究了2014年7月长江口盐度梯度下不同形态碳的分布、来源和混合行为。结果表明,DIC浓度、DOC浓度、POC含量分别为1 583.2~1 739.6 μmol/L,128.4~369.4 μmol/L和51.2~530.8 μmol/L,这些不同形态碳及CDOM的荧光组分的分布模式相似,均是从口内到口外,整体呈现先增大后减小的趋势,并与盐度呈现非保守混合行为。添加作用主要发生在在口门处最大浑浊带附近。与含量相反,从口内到口外,δ13CDIC和δ13CPOC均呈现逐渐减小再增大的趋势,在口门附近达到最低值,分别为-9.7‰和-26.7‰。在口门附近不同形态碳含量上升及δ13CDIC、δ13CPOC的降低可能主要与沉积物再悬浮及微生物作用有关。基于蒙特卡洛模拟的三端元混合模型的结果显示,河口内外POC来源变化明显,口内POC以陆源有机碳贡献为主,平均为62.3%,口外海源贡献逐渐增加。CDOM相关参数结果表明长江口CDOM主要来自陆源输入,海源及人类活动等也对其产生影响。  相似文献   

16.
Recent in situ observations of chromophoric dissolved organic material (CDOM) in the Pacific Ocean reveal the biogeochemical controls on CDOM and indicate predictive potential for open-ocean CDOM in diagnosing particulate organic matter (POM) remineralization rates within ocean basins. Relationships between CDOM and concentrations of dissolved oxygen, nutrients and inorganic carbon in the subthermocline waters of the Pacific reflect the relative influences of water mass ventilation and water-column oxidative remineralization. Apparent in situ oxygen utilization (AOU) accounts for 86% and 61% of variance in CDOM abundance, respectively, in Antarctic Intermediate Water and North Pacific Intermediate Water. In the deep waters of the Pacific below the zone of remineralization, AOU explains 26% of CDOM variability. The AOU–CDOM relationship results from competing biogeochemical and advective processes within the ocean interior. Dissolved organic carbon (DOC) is not statistically linked to the CDOM or AOU distributions, indicating that the majority of CDOM production occurs during the remineralization of sinking POM and thus potentially provides key information about carbon export. Once formed in the ocean interior, CDOM is relatively stable until it reaches the surface ocean where it is destroyed by solar bleaching. Susceptibility to bleaching confers an additional tracer-like quality for CDOM in water masses with active convection, such as mode waters that appear as subsurface CDOM minima. In the surface ocean, atypically low CDOM abundance highlights a region of unusually extreme oligotrophy: the subtropical South Pacific gyre. For these hyper-oligotrophic waters, the present CDOM observations are consistent with analysis of in situ radiometric observations of light attenuation and reflectance, demonstrating the accuracy of the CDOM spectrophotometric observations. Overall, we illustrate how CDOM abundance in the ocean interior can potentially diagnose rates of thermohaline overturning as they affect regional biogeochemistry and export. We further show how relative surface ocean CDOM abundances are driven in large part by processes occurring in the deep layers of the ocean. This is particularly significant for the interpretation of the global surface distribution of CDOM using satellite remote sensing.  相似文献   

17.
Dissolved organic carbon(DOC) and particulate organic carbon(POC) are basic variables for the ocean carbon cycle.Knowledge of the distribution and inventory of these variables is important for a better estimation and understanding of the global carbon cycle.Owing to its considerable advantages in spatial and temporal coverage,remote sensing data provide estimates of DOC and POC inventories,which are able to give a synthetic view for the distribution and transportation of carbon pools.To estimate organic carbon inventories using remote sensing involves integration of the surface concentration and vertical profile models,and the development of these models is critical to the accuracy of estimates.Hence,the distribution and control factors of DOC and POC in the ocean first are briefly summarized,and then studies of DOC and POC inventories and flux estimations are reviewed,most of which are based on field data and few of which consider the vertical distributions of POC or DOC.There is some research on the estimation of POC inventory by remote sensing,mainly in the open ocean,in which three kinds of vertical profile models have been proposed:the uniform,exponential decay,and Gauss models.However,research on remote-sensing estimation of the DOC inventory remains lacking.A synthetic review of approaches used to estimate the organic carbon inventories is offered and the future development of methods is discussed for such estimates using remote sensing data in coastal waters.  相似文献   

18.
Chromophoric dissolved organic matter (CDOM) is the major light absorber in the Baltic Sea. In this study, excitation emission matrix (EEM) fluorescence spectra and UV–visible absorption spectra of CDOM are reported as a function of salinity. Samples from different locations and over different seasons were collected during four cruises in 2002 and 2003 in the Baltic Sea in both Pomeranian Bay and the Gulf of Gdansk. Absorption by CDOM decreased with increased distance from the riverine source and reached a relatively stable absorption background in the open sea. Regression analysis showed that fluorescence intensity was linearly related to absorption by CDOM at 375 nm and aCDOM(375) absorption coefficients were inversely related to salinity. Analysis of CDOM-EEM spectra indicated that a change in composition of CDOM occurred along the salinity gradient in the Baltic Sea. Analysis of percent contribution of respective fluorophore groups to the total intensity of EEM spectra indicated that the fluorescence peaks associated with terrestrial humic components of the CDOM and total integrated fluorescence decreased with decreasing CDOM absorption. In contrast, the protein-like fraction of CDOM decreased to a lesser degree than the others. Analysis of the percent contribution of fluorescence peak intensities to the total fluorescence along the salinity gradient showed that the contribution of protein-like fluorophores increased from 2.6% to 5.1% in the high-salinity region of the transect. Fluorescence and absorption changes observed in the Baltic Sea were similar to those observed in similar transects that have been sampled elsewhere, e.g. in European estuaries, Gulf of Mexico, Mid-Atlantic Bight and the Cape Fear River plume in the South Atlantic Bight, although the changes in the Baltic Sea occurred over a much smaller salinity gradient.  相似文献   

19.
The quantity of chromophoric or coloured dissolved organic matter (CDOM) released by eleven species of intertidal and sub-tidal macroalgae commonly found on UK shores was investigated. The subsequent breakdown of CDOM was also measured by exposing collected CDOM samples to light and dark conditions for over two weeks. CDOM absorption properties were compared at a fixed wavelength of 440 nm and across two integrated wave - bands; UV-A (400–315 nm) and UV-B (315–280 nm). Absorption spectra of macroalgal CDOM samples were typically characterized by peaks and shoulders in the UV bands, features which were species specific. The spectral slope, derived using the log-linear method, proved to be very specific to the species and to the effect of light. Slope measurements ranged from 0.010 to 0.027 nm−1, in the range of normal seawater values. Significantly more CDOM was produced by algae which were illuminated, providing evidence for a light driven exudation mechanism. Averaged across all species, exudation in the dark accounted for 63.7% of that in the light in the UV-B band. Interspecific differences in exudation rate encompassed an order of magnitude, with the highest absorption measurements attributable to brown algae. However, some brown algae produced considerably less CDOM (e.g. Pelvetia canaliculata), which were more comparable to the green and red species. Over an exposure time of 16 days, significant photochemical degradation of CDOM was observed using a natural summer sunlight regime, showing that natural solar radiation could be an important removal mechanism for newly produced algal CDOM. Though the most obvious effect was a decrease in absorption, photo-bleaching also caused a significant increase in the spectral slope parameter of 0.004 nm−1.  相似文献   

20.
Light attenuation (Kd) of photosynthetically active radiation (PAR) by chromophoric dissolved organic matter (CDOM), total suspended solids (TSS) and chlorophyll a (Chl a) were measured at nine stations along an estuarine gradient in the Swan River, Western Australia, over 15 months. There were strong spatial gradients associated with the marine-freshwater transition along the 32 km of estuary sampled, as well as seasonal gradients mainly associated with rainfall, 80% of which occurs between May and September. CDOM absorbances at 440 nm reached a maximum of 10.9 m−1 with the freshwater inflow but concentrations of suspended matter remained low throughout the sampling period (1.0–21.0 mg l−1) under the diurnal tides of the estuary. CDOM was the dominant constituent of Kd and a stepwise multiple regression showed that 66% (p < 0.0001) of the variation in Kd can be explained by CDOM and an additional 8% (p < 0.0001) by TSS. As a consequence of this result, analysis into the influence of river discharge rates on CDOM absorbance levels was examined for 2002 using data collected during this study, and for 2000 and 2001 using historical dissolved organic carbon (DOC) and river discharge data. The outcome of this analysis infers that greater river discharge rates result in increased CDOM absorbances in the Swan River estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号