首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
真实的海洋波浪是随机的,而前人对海床的动态响应分析大都是选用线性波或者Stokes波理论,对海床的模拟大都采用Biot拟静力模型,忽略了流体速度及土体位移加速度的影响。联合使用Longuet-Higgins随机波模型(采用Jonswap谱)以及动力u-p形式的海床响应计算模型,使用COMSOL Multiphysics多场耦合软件的PDE模块输入方程进行有限元计算,得到随机波作用下整体海床动态响应结果。将随机波结果与一阶Stokes波和椭圆余弦波结果进行对比,并对渗透系数和饱和度进行参数分析,研究表明渗透系数和饱和度对于随机波作用下海床动态响应影响显著。  相似文献   

2.
用 Monte Carlo方法数值模拟海浪 ,研究其波包曲线跨某参考水平的波包中空波包所占的平均比例 ,并与 Ditlevsen和 L indgren关于空波包的理论相比较。结果表明 ,在二阶近似下该理论近似适用于海浪。在此基础上对 Longuet- Higgins的群性波包理论进行修正。修正后的理论与数值结果的比较表明本文所做的修正是十分有效的。修正后的群性波包理论克服了原理论的某些固有缺陷  相似文献   

3.
基于 L onguet- Higgins线性海浪模型 ,在二维情况下导出海浪波面极大值处水质点水平加速度分布律 ,其分布遵从正态分布。在分布中引入新的谱宽度参量 [(m2 m4 - m23 ) / m2 m4 ]12 。以Neumann谱为模式计算波面极大值处质点加速度分布。  相似文献   

4.
To obtain a better understanding of the oscillatory soil liquefaction around an offshore pipeline, a three-dimensional integrated model for the wave–seabed–pipeline interaction (WSPI) is proposed by combining the Reynolds-Averaged Navier–Stokes equations for flow simulations and the dynamic Biot’s equation (“u-p” approximation) for the poro-elastic seabed model. Compared with previous investigations, the wave–current interaction is included in the present WSPI system. At a given time step, the wave pressure extracted from the flow model is applied on the seabed surface to determine the corresponding oscillatory seabed response around an offshore pipeline. The integrated numerical model is first validated using previous laboratory experiments. Then, a parametric study is conducted to examine the effects of flow obliquity and pipeline burial depth on the soil response around an offshore pipeline. Numerical results indicate that the soil under the pipeline is more susceptible to liquefaction at a reduced flow obliquity and pipeline burial depth. Moreover, the liquefaction depth in the case where the wave travels along the current can increase by 10%–30% compared to that in the case where the wave travels against the current, when the magnitude of the current velocity is 1 m/s.  相似文献   

5.
The topic of wave-seabed interaction is important for civil engineers with regard to stability analysis of foundations for offshore structures. Most previous investigations of such problems have simply assumed a seabed with uniform permeability, even if the evidence of variable permeability has been reported in the literature. This paper presents a finite-element model for investigating the wave-induced seabed response in a porous seabed, with variable permeability as a function of burial depth. The present finite formulation is established by using a combination of semi-analytical techniques and the Galerkin method. Based on the present numerical model, together with the Mohr-Coulomb failure criterion, the wave-induced seabed instability is estimated. The numerical results indicate that variable permeability affects the wave-induced seabed instability significantly, especially for gravelled seabeds.  相似文献   

6.
Wave-induced liquefaction in a porous seabed around submarine pipeline may cause catastrophic consequences such as large horizontal displacements of pipelines on the seabed, sinking or floatation of buried pipelines. Most previous studies in relation to the wave and seabed interactions with embedded pipeline dealt with the wave-induced instaneous seabed response and possible resulting momentary liquefaction (where the soil is liquefied instantaneously during the passage of a wave trough), using theory of poro-elasticity. Studies for the interactions between a buried pipeline and a soil undergoing build-up of pore pressure and residual liquefaction have been comparatively rare. In this paper, this complicated process was investigated by using a new developed integrated numerical model with RANS (Reynolds averaged Navier–Stokes) equations used for governing the incompressible flow in the wave field and Biot consolidation equations used for linking the solid–pore fluid interactions in a porous seabed with embedded pipeline. Regarding the wave-induced residual soil response, a two-dimensional poro-elastoplastic solution with the new definition of the source term was developed, where the pre-consolidation analysis of seabed foundation under gravitational forces including the body forces of a pipeline was incorporated. The proposed numerical model was verified with laboratory experiment to demonstrate its accuracy and effectiveness. The numerical results indicate that residual liquefaction is more likely to occur in the vicinity of the pipeline compared to that in the far-field. The inclusion of body forces of a pipeline in the pre-consolidation analysis of seabed foundation significantly affects the potential for residual liquefaction in the vicinity of the pipeline, especially for a shallow-embedded case. Parametric studies reveal that the gradients of maximum liquefaction depth with various wave and soil characteristics become steeper as pipeline burial depth decreases.  相似文献   

7.
The coupling numerical model of wave interaction with porous medium is used to study waveinduced pore water pressure in high permeability seabed.In the model,the wave field solver is based on the two dimensional Reynolds-averaged Navier-Stokes(RANS) equations with a k-ε closure,and Forchheimer equations are adopted for flow within the porous media.By introducing a Velocity-Pressure Correction equation for the wave flow and porous flow,a highly efficient coupling between the two flows is implemented.The numerical tests are conducted to study the effects of seabed thickness,porosity,particle size and intrinsic permeability coefficient on regular wave and solitary wave-induced pore water pressure response.The results indicate that,as compared with regular wave-induced,solitary wave-induced pore water pressure has larger values and stronger action on seabed with different parameters.The results also clearly show the flow characteristics of pore water flow within seabed and water wave flow on seabed.The maximum pore water flow velocities within seabed under solitary wave action are higher than those under regular wave action.  相似文献   

8.
In this study, unlike most previous investigations for wave-induced soil response, a simple semi-analytical model for the random wave-induced soil response is established for an unsaturated seabed of finite thickness. Two different wave spectra, the B-M and JONSWAP spectra, are considered in the new model. The influence of random wave loading on the soil response is investigated by comparing with the corresponding representative regular wave results through a parametric study, which includes the effect of the degree of saturation, soil permeability, wave height, wave period and seabed thickness. The maximum liquefaction depth under the random waves is also examined. The difference on the soil response under the two random wave types, B-M and JONSWAP frequency spectra, is also discussed in the present work.  相似文献   

9.
The stability of a porous seabed under wave and current loadings is particularly important for engineers to design marine structures such as submarine pipelines, breakwaters, and offshore platform foundations. Most previous investigations of dynamic response of marine structures and seabed have only considered the influence of wave loading, but the important influence of current is ignored. Even if the influence of current is considered, the interaction mechanism of both loadings has not been clearly elaborated. Based on the Biot’s dynamic theory and combined two-dimensional nonlinear progressive wave and uniform current theory, the interaction mechanism of wave and current loadings and the influence of current on wave characteristic are analyzed by numerical computations. The influence of current velocity, different permeability, and stratification in seabed on the effective stresses and pore pressures of seabed is discussed in detail. Further, the stability of seabed is evaluated through the liquefaction analysis of seabed, which will provide important reference frames to improve the design and construction of marine structures.  相似文献   

10.
Abstract

Blast response of submerged pipelines has been a research focus in recent years. In this article, a three-dimensional numerical model is established to investigate dynamic response of pipelines due to underwater explosion. The up approximation is integrated into finite element method (FEM) to simulate pore water effect in the seabed. Numerical continuity between hydraulic pressure in the flow field and pore pressure in the marine sediment is guaranteed to realize the blast response of submerged pipelines in ocean environment. Both fluid–structure interaction (FSI) and pipeline–seabed interaction (PSI) have been considered in the proposed model simultaneously. A comprehensive parametric study is carried out after validation of the present model with test data from underground explosion and underwater explosion, respectively. The effect of embedment depth, TNT equivalent, stand-off distance, pipeline diameter, and pipeline thickness to blast response of the submerged pipelines is investigated based on numerical results. Variation of deformation patterns and stress distribution of the pipeline with various installation and structure parameters has been illustrated and discussed to facilitate engineering practice.  相似文献   

11.
华莹  周香莲  张军 《海洋通报》2017,36(6):644-651
基于广义Biot动力理论和Longuet-Higgins线性叠加模型,构建波浪-海床-管线动态响应的有限元计算模型,求解随机波作用下,多层砂质海床中管线周围土体孔隙水压力和竖向有效应力的分布。采用基于超静孔隙水压力的液化判断准则,得出液化区的最大深度及横向范围,从而判断海床土体液化情况。考虑海洋波浪的随机性,将海床视为多孔介质,海床动态响应计算模型采用u-p模式,孔隙水压力和位移视为场变量。并考虑孔隙水的可压缩性、海床弹性变形、土体速度、土体加速度以及流体速度的影响,忽略孔隙流体惯性作用。参数研究表明:土体渗透系数、饱和度以及有效波高等参数对海床土体孔隙水压力、竖向有效应力和液化区域分布有显著影响。  相似文献   

12.
The numerical investigation of random wave slamming on superstructures of marine structures in the splash zone is presented in this paper. The impact pressures on the underside of the structure are computed based on the improved volume of fluid method (VOF). The governing equations are Reynolds time-averaged equations and the two equation k model. The third order upwind difference scheme is applied to the convection term to reduce the effect of numerical viscosity. The numerical wave flume with random wave-maker suitable for VOF is established. Appropriate moving contact-line boundary conditions are introduced to the model wave in contact with and separated from the underside of structure. Parametric studies have been carried out for different incident waves, structure dimensions and structure clearance. The numerical results are verified by the experimental results.  相似文献   

13.
A new coupling model of wave interaction with porous medium is established in which the wave field solver is based on the two dimensional Reynolds Averaged Navier-Stokes (RANS) equations with a closure. Incident waves, which could be linear waves, cnoidal waves or solitary waves, are produced by a piston-type wave maker in the computational domain and the free surface is traced through the Piecewise Linear Interface Construction-Volume of Fluid (PLIC-VOF) method. Nonlinear Forchheimer equations are adopted to calculate the flow field within the porous media. By introducing a velocity–pressure correction equation, the wave field and the porous flow field are highly and efficiently coupled. The two fields are solved simultaneously and no boundary condition is needed at the interface of the internal porous flow and the external wave. The newly developed numerical model is used to simulate wave interaction with porous seabed and the numerical results agree well with the experimental data. The additional numerical tests are also conducted to study the effects of seabed thickness, porosity and permeability coefficient on wave damping and the pore water pressure responses.  相似文献   

14.
The evaluation of seabed response under wave loading is important for prediction of stability of foundations of offshore structures. In this study, a stochastic finite element model which integrates the Karhunen-Loève expansion random field simulation and finite element modeling of wave-induced seabed response is established. The wave-induced oscillatory response in a spatially random heterogeneous porous seabed considering cross-correlated multiple soil properties is investigated. The effects of multiple spatial random soil properties, correlation length and the trend function (the relation of the mean value versus depth) on oscillatory pore water pressure and momentary liquefaction are discussed. The stochastic analyses show that the uncertainty bounds of oscillatory pore water pressure are wider for the case with multiple spatially random soil properties compared with those with the single random soil property. The mean pore water pressure of the stochastic analysis is greater than the one obtained by the deterministic analysis. Therefore, the average momentary liquefaction zone in the stochastic analysis is shallower than the deterministic one. The median of momentary liquefaction depth generally decreases with the increase of vertical correlation length. When the slope of the trend function increases, the uncertainty of pore water pressure is greatly reduced at deeper depth of the seabed. Without considering the trend of soil properties, the wave-induced momentary liquefaction potential may be underestimated.  相似文献   

15.
Wave-induced instability of seabed may cause damage to coastal and offshore structures. This issue has been investigated mostly for mildly sloping (<5°) seabed considering uncoupled or one-way coupled response of wave and seabed interaction. However, some of the marine structures are founded on seabed with steeper slopes. In this study, the wave-induced response and instability of sloping seabed are evaluated using a coupled finite element model. The interaction between fluid and porous seabed accounting for the effect of fluid motion on the seabed response, and conversely the effect of seabed response on the fluid motion (but not on the surface wave profile) is considered. The results indicate that the system response (fluid pressure, stresses, etc.) and the extent of instantaneously liquefied zone within the sloping seabed with significant steepness are lesser than those for horizontal seabed. Moreover, for typical sediment and wave characteristics, for the flat seabed, the response obtained from fully coupled analysis is not significantly different from those obtained by uncoupled analysis. For the sloping bed, such difference is slightly greater as compared to that for the flat bed.  相似文献   

16.
The nearshore circulation and the wave characteristics are important parameters, which control coastline morphology. The interaction of nearshore circulation with coastal structures, modify the wave characteristics and seabed topography, often resulting in scour near the foundation of the structures. This paper deals with the numerical prediction of nearshore circulation induced due to wave setup in the nearshore region with and without the structure [(i) structure resting on seabed (ii) structure raised above the seabed]. It is also helps understand the deficiencies in studying the coastal characteristics by describing the flow field due to the wave velocity potential alone. Comparison of the results of both nearshore circulation and the wave potential model are discussed and the importance of the study and its prototype applications are highlighted.  相似文献   

17.
《Coastal Engineering》2003,48(3):197-209
A new method is presented for identifying potential pipeline problems, such as hazardous exposures. This method comprises a newly developed sand wave amplitude and migration model, and an existing pipeline–seabed interaction model. The sand wave migration model is based on physical principles and tuned with field data through data assimilation techniques. Due to its physical basis, this method is trusted to be more reliable than other, mostly engineering-based methods. The model describes and predicts the dynamics of sand waves and provides the necessary bed level input for the pipeline–seabed interaction model. The method was tested by performing a hindcast on the basis of survey data for a specific submarine gas pipeline, diameter 0.4 m, on the Dutch continental shelf. Good agreement was found with the observed seabed–pipeline levels. The applicability of the method was investigated further through a number of test cases. The self-lowering of the pipeline, in response to exposures due to sand wave migration, can be predicted, both effectively and efficiently. This allows the use of the method as a tool for pipeline operation, maintenance and abandonment.  相似文献   

18.
为了研究波流共同荷载作用下开挖基槽附近海床动态响应和液化破坏情况,提出一个二维耦合计算模型,采用雷诺时均纳维-斯托克斯(RANS)方程描述波浪运动情况,通过设定侧边界条件实现稳定流场。海床部分通过求解Biot固结方程,得到波流荷载下海床中的应力和位移情况。将模型计算结果与水槽试验数据和解析解进行比较,验证了波流模型和海床模型的有效性。在此模型基础上,分析得到了开挖之后海床新的应力和固结状态。同时,通过参数分析得到了波流耦合情况下波浪形态的变化,以及海流对海床液化情况和孔压情况的影响。最后,通过线性回归计算得到最大液化深度与流速的拟合关系曲线。计算结果可用于判断基槽开挖后不规则海床的液化情况,对相关研究和实际工程具有一定参考意义。  相似文献   

19.
In this study, a mathematical integrated model is developed to investigate the wave-induced sloping seabed response in the vicinity of breakwater. In the present model, the wave model is based on the Volume-Averaged/Reynolds Averaged Navier–Stokes (VARANS) equations, while Biot's consolidation equation is used to govern the soil model. The influence of turbulence fluctuations on the mean flow with respect to the complicated interaction between wave, sloping seabed and breakwater are obtained by solving the Volume-Averaged k  ϵ model. Unlike previous investigations, the phase-resolved absolute shear stress is used as the source of accumulation of residual pore pressure, which can link the oscillatory and residual mechanisms simultaneously. Based on the proposed model, parametric studies regarding the effects of wave and soil characteristics as well as bed slopes on the wave-induced soil response in the vicinity of breakwater are investigated. Numerical results indicate that wave-induced seabed instability is more likely to occur in a steep slope in the case of soil with low relative density and low permeability under large wave loadings. It is also found that, the permeability of breakwater significantly affect the potential for liquefaction, especially in the region below the breakwater.  相似文献   

20.
王涛  张琪  叶冠林 《海洋工程》2022,40(1):93-103
大直径单桩基础是海上风电应用广泛的一种基础形式,严格控制桩基泥面处的位移是保证基础稳定和风机安全运营的关键因素.通过数值方法建立了单桩—海床的三维模型,将可以描述海洋砂土超固结性和结构性的弹塑性本构模型通过UMAT子程序嵌入有限元软件ABAQUS中,桩基承受的波浪荷载通过Morison方程进行计算模拟.针对无波浪荷载、仅作用于海床的波浪荷载、同时作用于桩基和海床的波浪荷载三种情况,分析了海床土的动力响应以及桩基的水平位移之间的差异,探讨了海床土体参数对桩基水平变形的影响.研究结果表明海床土体液化会导致桩基水平变形增加,海床土渗透性、超固结性、结构性对桩基水平位移影响显著,研究成果可为海上风电单桩基础的设计与运维提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号