首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
陈子燊  任杰 《海洋通报》2019,38(6):656-661
应用广义Pareto分布(GPD)分析超阈值波高序列的设计值。以位于美国北卡罗来纳州的FRF历时32年连续测量的逐日波高序列为例,检验了不同波高阈值样本的泊松分布,采用多种方法综合确定最佳阈值的拟合优度指标。对最优广义Pareto分布和GEV分布及P-Ⅲ分布推算的波高重现水平做了对比分析。得到以下结论:(1)波高的GPD属于短尾型分布;(2)拟合优度指标表明构建的波高GPD模型普遍优于GEV和P-Ⅲ型;(3)GPD的参数估计方法对设计波高的计算结果有较大影响。  相似文献   

2.
根据涠洲海洋监测站多年风和波浪实时观测资料,分析得出:涠洲岛海域累年强风向为N和NNE,其平均风速分别为5.9 m/s和5.3 m/s;常风向为NNE和ENE,其频率分别为18.2%和12.4%;夏季(6—8月)月平均风速最大,春季(3—5月)月平均风速最小。涠洲岛海域累年强浪向为SSW,其波高(H_(1/10))平均值为0.8 m;常浪向为NNE、SSW、NE和ENE,其频率分别为16.5%、16.2%、14.4%和10.5%;夏季(6—8月)波高(H_(1/10))月平均值最大,其余季节月平均值稍小于夏季。采用Pearson-Ⅲ型分布曲线对4个方向角风速的年最大值和波高(H_(1/10))的年最大值进行重现期计算。结果表明:涠洲岛海域ENE向风速多年一遇值最大;涠洲岛海域SSW向波高(H_(1/10))多年一遇值最大。  相似文献   

3.
极值样本的选取和分布模型的确定是设计波高推算中的两个关键环节。使用阈值法选取波高过阈样本作为极值样本时,常用标准风暴长度法对超出量序列进行“去聚类”处理,以使样本符合独立性标准。然而标准风暴长度法中的标准风暴长度需要人为选择,增加了取样结果的不确定性。本文提出了一种自动的标准风暴长度估计方法,并基于该方法选取了粤西海域的波高过阈样本。波高过阈样本具有尖峰、厚尾的统计特征,为了更准确地拟合该样本,本文基于组合模型原理构建了一种新的分布模型——Gumbel-Pareto分布模型,并用该模型进行了粤西海域的设计波高推算,结果表明Gumbel-Pareto分布对波高过阈样本的拟合优度比Gumbel分布和广义Pareto分布更高,可以为大型海洋工程设计波高的确定提供参考。  相似文献   

4.
陈子燊 《海洋通报》2011,30(2):159-164
基于copula函数论述了两变量的联合概率分布方法.此方法的主要优点是边缘分布可由不同的分布函数构成,变量间可具相关性.以粤东汕尾海域极值波高与相应风速为研究实例,经分析获得以下结果:(1)优选的极值波高和风速可分别由P-Ⅲ型和GEV 分布表示:(2)拟合优度检验指标表明二者的最优连接函数为Archimedean co...  相似文献   

5.
首先介绍了耿贝尔逻辑模型,采用该模型对南海海域的涠州岛海洋站的风速和有效波高实测数据进行了分析,结果表明耿贝尔逻辑模型较好地描述了年极值风速和有效波高两随机变量的联合分布;采用得到的极值风浪联合概率分布推算了不同重现期的极值风速和波高,表明考虑风速和波高相关性对设计荷载的确定有显著影响。由于耿贝尔逻辑模型具有函数结构简单,参数估计方便,因此有望成为极值风速和波高联合分布的较理想概率模型。  相似文献   

6.
蔡丽 《海岸工程》2023,(1):61-74
为了给江苏滨海海域海上风电场的结构设计提供更为合理的设计参数,本文利用定量分析法对比分析了采用不同推算方法推算得到的工程海域极值波高,讨论了不同推算方法的差异及影响。结果表明:采用年极值法、条件极值法(包括风暴统计法、阈值上限法)和组合法推算出的工程海域极值波高受理论频率曲线、热带风暴年均频次、极端设计风速和特定水位的影响较大。其中,热带风暴年均频次主要影响风暴统计法推算的结果,当热带风暴年均频次不小于1时,推算的结果趋于稳定,相对偏差小于5%;极端设计风速和特定水位主要影响组合法推算的结果,极端设计风速的选择主要影响极值波高在各个方向上的分布,特定水位的叠加主要影响极值波高的幅值;对于非特定水位下的极值波高,利用条件极值法中的风暴统计法推算的结果最大,为6.55 m;利用年极值法中P-Ⅲ型曲线推算的结果最小,为5.48 m;两者相对偏差约20%;对于特定水位下的极值波高,利用组合法推算出的NW—SE方向极值波高与水位呈正相关,即叠加正水位时,极值波高增大,叠加负水位时,极值波高减小,幅值变化可达±15%;且极值波高的方向分布与所采用的极端设计风速的方向分布相同,利用极值波高对应的设计...  相似文献   

7.
基于广西涠洲岛海洋监测站3个方向的年极值波高观测资料,在假设其服从Weibull分布的基础上,运用最小二乘法,矩估计法和最速下降法对Weibull分布的参数进行估计,同时引入粒子群算法确定Weibull分布的3个参数,对文中4种方法得出的拟合结果及运算效率进行比较分析,说明了粒子群算法在估计极值分布参数中的优势.  相似文献   

8.
陈子燊  曹深西 《海洋通报》2012,31(6):630-635
基于二元copula函数构建波高与相应波周期的长期联合分布。以粤东汕尾海域最大波高与相应平均周期为研究实例,经分析获得以下结果:(1)经拟合优度检验优选的年最大波高与相应周期的边缘分布分别为皮尔逊三型分布和广义极值分布,二者之间的较优连接函数为Archimedean类的Gumbel-Hougaard copula函数;(2)同频率条件下年最大波高和相应周期联合概率分布的设计要素值高于单变量的设计值,其中波高设计值的差异略大于周期设计值;(3)同现重现期和联合重现期的设计值可作为海岸海洋工程建设中的设计波高和相应周期的上限和下限;(4)条件概率1表明,同频率下的年最大波高和相应周期的遭遇概率很高,其组合概率可作为工程建筑物损毁风险率。  相似文献   

9.
王志旭  陈子燊 《海洋通报》2013,32(2):127-132
介绍了三参数威布尔分布及其4种参数估计方法:极大似然估计法、相关系数优化法、灰色估计法和概率权重矩法。利用蒙特卡罗法对以上参数估计方法进行不同样本尺度的模拟,通过偏差、标准差和均方误差对比分析各种方法的特点、精度和适用性。运用上述方法结合涠洲站34a实测年极值波高,推算涠洲岛的设计波高,从相关系数、均方根误差和Q统计值分析各种方法的差异及优劣性。结果表明,小样本情况下各估计法的差别较大,而大样本时差别较小,极大似然估计法能较好拟合各种大小的样本,相关系数优化法次之;选取合适的经验频率会提高参数估计精度;各种参数估计方法计算而得的设计波高相差不大,其中极大似然估计法的精度最高  相似文献   

10.
尤再进 《海洋与湖沼》2022,53(4):1015-1025
重现期波高是港口海岸及海洋工程设计中不可回避的一个重要设计参数,尤其对深水海港、海上平台、海底油气管道、沿海核电站等重大涉海工程设计具有巨大的经济价值和深远的社会效益。但是,现有重现期波高推算缺乏统一的计算方法,导致计算结果相差悬殊。研究重现期波高的统一化计算方法,分析重现期波高计算中存在的各种不确定因素,提出减少这些不确定因素的新方法,建立误差小、应用方便、方法统一的重现期波高计算方法。基于澳大利亚悉尼站的长期连续观测波浪数据,研究发现:广义帕累托函数(generalized Pareto distribution III,GPD-III)和威布尔(Weibull)是重现期波高计算的最佳候选极值分布函数,新推导的函数形状参数计算公式较好提高重现期波高的计算精度,极值波高数据的分析方法和样本大小是影响重现期波高计算精确度的两个重要因素,短期波浪资料和年极值法可能高估重现期波高值。逐个风暴的极值波高数据分析法及最佳候选极值分布函数GPD-III和Weibull建议应用于涉海工程设计的重现期波高推算。  相似文献   

11.
A time-dependent generalized extreme value (GEV) model for monthly significant wave heights maxima is developed. The model is applied to several 3-hour time series from the Spanish buoy network. Monthly maxima show a clear non-stationary behavior within a year, suggesting that the location, scale and shape parameters of the GEV distribution can be parameterized using harmonic functions. To avoid a possible over-parameterization, an automatic selection model, based on the Akaike Information Criterion, is carried out. Results show that the non-stationary behavior of monthly maxima significant wave height is adequately modeled, drastically increasing the significance of the parameters involved and reducing the uncertainty in the return level estimation. The model provides new information to analyze the seasonal behavior of wave height extremes affecting different natural coastal processes.  相似文献   

12.
Prediction of Extreme Significant Wave Height from Daily Maxima   总被引:4,自引:0,他引:4  
LIU  Defu 《中国海洋工程》2001,(1):97-106
For prediction of the extreme significant wave height in the ocean areas where long term wave data are not available, the empirical method of extrapolating short term data (1-3 years) is used in design practice. In this paper two methods are proposed to predict extreme significant wave height based on short-term daily maxima. According to the da-a recorded by the Oceanographic Station of Liaodong Bay at the Bohai Sea, it is supposed that daily maximum wave heights are statistically independent. The data show that daily maximum wave heights obey log-normal distribution, and that the numbers of daily maxima vary from year to year, obeying binomial distribution. Based on these statistical characteristics, the binomial-log-normal compound extremum distribution is derived for prediction of extreme significant wave heights (50-100 years). For examination of its accuracy and validity, the prediction of extreme wave heights is based on 12 years' data at this station, and based on each 3 years' data respectively  相似文献   

13.
A model for the depth-limited distribution of the highest wave in a sea state is presented. The distribution for the extreme wave height is based on a probability density function (pdf) for depth-limited wave height distribution for individual waves [Méndez, F.J., Losada, I.J., Medina, R. 2004. Transformation model of wave height distribution. Coastal Eng, Vol. 50, 97:115.] and considers the correlation between consecutive waves. The model is validated using field data showing a good representation of the extreme wave heights in the surf zone. Some important statistical wave heights are parameterized obtaining useful expressions that can be used in further calculations.  相似文献   

14.
Ocean waves and forces induced by them on offshore structures are random in nature. Experience has shown that short term statistics of wave heights can be described by the Rayleigh distribution for narrow band spectra (Longuet-Higgins, 1952) and that the long term statistics or the evaluation of design wave is based on certain well known extreme value distribution such as mixed Frechet distribution (Thom, 1973a, b).This paper presents a new application of the double bounded probability density function to describe the ocean wave statistics. The prime importance is to estimate the most probable maximum wave height for offshore structural designs.  相似文献   

15.
1 .Introduction1ThisworkwasfinanciallysupportedbythePh .DfoundationofEducationMinistryofChina (GrantNo .2 0 0 0 0 4 2 30 8) . Correspondingauthor.E mail:xudel@mail.ouqd .edu .cn  Becausetheestimationoflikelyextremewaveconditionsiscloselyrelatedwiththesafeandcosteffectiv…  相似文献   

16.
Deep-water wave buoy data offshore from the U.S. Pacific Northwest (Oregon and Washington) document that the annual averages of deep-water significant wave heights (SWHs) have increased at a rate of approximately 0.015 m/yr since the mid-1970s, while averages of the five highest SWHs per year have increased at the appreciably greater rate of 0.071 m/yr. Histograms of the hourly-measured SWHs more fully document this shift toward higher values over the decades, demonstrating that both the relatively low waves of the summer and the highest SWHs generated by winter storms have increased. Wave heights associated with higher percentiles in the SWH cumulative distribution function are shown to be increasing at progressively faster rates than those associated with lower percentiles. This property is demonstrated to be a direct result of the probability distributions for annual wave climates having lognormal- or Weibull-like forms in that a moderate increase in the mean SWH produces significantly greater increases in the tail of the distribution. Both the linear regressions of increasing annual averages and the evolving probability distribution of the SWH climate, demonstrating the non-stationarity of the Pacific Northwest wave climate, translate into substantial increases in extreme value projections, important in coastal engineering design and in quantifying coastal hazards. Buoy data have been analyzed to assess this response in the wave climate by employing various time-dependent extreme value models that directly compute the progressive increases in the 25- to 100-year projections. The results depend somewhat on the assumptions made in the statistical procedures, on the numbers of storm-generated SWHs included, and on the threshold value for inclusion in the analyses, but the results are consistent with the linear regressions of annual averages and the observed shifts in the histograms.  相似文献   

17.
Calibration coefficients incorporated in the modified Weibull distribution are more effective for maximum wave height simulation. The parametric relations are derived there from to estimate various wave height statistics including extreme wave heights. The characteristic function of the Weibull distribution is derived. The Weibull distribution is suggested for the newly defined significant wave height simulation by the method of characteristic function. The statistical tools suggested and developed here for predicting the required wave height statistics are validated against the wave data (both deep and shallow) of eastern Arabian Sea comprising rough monsoon conditions also, giving reasonable accuracy.  相似文献   

18.
本课题对福清湾的海浪要素进行了较系统的研究,并在几个方面对海浪的极值估计问题进行了专门探讨。一是选用基于文氏海浪理论谱原理的波浪折绕射联合模型方法分析外海海浪在福清湾水域传播的衰减程度,其次是采用新订正的浅水风浪公式分析湾内有限风区的浅水风浪状况,同时也对这一海区的实测海浪特征进行综合分析,以便能够使港口工程规划和设计部门对福清湾的海浪影响程度有较全面的了解。  相似文献   

19.
长期极值统计理论及其在海洋环境参数统计分析中的应用   总被引:1,自引:0,他引:1  
海洋环境极值参数(如风速、流速、波高、周期等)在海洋工程设计中具有重要意义。利用次序统计和极值理论方面的较新研究成果,从理论上证明了多种统计分布中Weibull分布是最优的,使长期极值统计建立在一个更坚实的基础上;同时引入基于序列统计的最大似然估计方法。利用大量数据.对最小二乘估计方法和最大似然估计法进行对比分析,指出最大似然估计法是精确估计.而最小二乘估计方法是保守估计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号