首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
Interstitial flows in breakwater cores and seabeds are a key consideration in coastal and marine engineering designs and have a direct impact on their structural safety.In this paper,a unified fully coupled model for wave?permeable breakwater?porous seabed interactions is built based on an improved N?S equation.A numerical wave flume is constructed,and numerical studies are carried out by applying the finite difference method.In combination with a physical model test,the accuracy of the numerical simulation results is verified by comparing the calculated and measured values of wave height at measurement points and the seepage pressure within the breakwater and seabed.On this basis,the characteristics of the surrounding wave field and the internal flow field of the pore structure,as well as the evolution process of the fluctuating pore water pressure inside the breakwater and seabed,are further analyzed.The spatial distribution of the maximum fluctuating pore water pressure in the breakwater is compared between two cases by considering whether the seabed is permeable,and then the effect of seabed permeability on the dynamic pore water pressure in the breakwater is clarified.This study attempts to provide a reference for breakwater design and the protection of nearby seabeds.  相似文献   

2.
The wave transmission characteristics and wave induced pressures on twin plate breakwater are investigated experimentally in regular and random waves.A total of twenty pressure transducers are fixed on four surfaces of twin plate to measure the wave induced dynamic pressures.The spatial distribution of dynamic wave pressure is given along the surface of the twin plate.The uplift wave force obtained by integrating the hydrodynamic pressure along the structure is presented.Discussed are the influence of different incident wave parameters including the relative plate width B /L,relative wave height /i H a and relative submergence depth s /a on the non-dimensional dynamic wave pressures and total wave forces.From the investigation,it is found that the optimum transmission coefficient,t K occurs around B /L 0.41 ~ 0.43,and the twin plate breakwater is more effective in different water depths.The maximum of pressure ratio decreases from 1.8 to 1.1 when the relative submergence depth of top plate is increased from 0.8to +0.8.  相似文献   

3.
A new method of treating maximum wave height as a random variable in reliability analysis of breakwater caissons is proposed. The maximum wave height is expressed as the significant wave height multiplied by the so-called wave height ratio.The proposed wave height ratio is a type of transfer function from the significant wave height to the maximum wave height.Under the condition of a breaking wave, the ratio is intrinsically nonlinear. Therefore, the probability density function for the  相似文献   

4.
An analytical method is developed to study the sheltering effects on arc-shaped floating perforated breakwaters. In the process of analysis, the floating breakwater is assumed to be rigid, thin, vertical, and immovable and located in water with constant depth. The fluid domain is divided into two regions by imaginary interface. The velocity potential in each region is expanded by eigenfunction in the context of linear theory. By satisfying continuity of pressure and normal velocity across the imaginary fluid interface, a set of linear algebraic equations can be obtained to determine the unknown coefficients for eigenfunction expansions. The accuracy of the present model was verified by a comparison with existing results for the case of arc-shaped floating breakwater. Numerical results, in the form of contour maps of the non-dimensional wave amplitude around the breakwater and diffracted wave amplitude at typical sections, are presented for a range of wave and breakwater parameters. Results show that the sheltering effects on the arc-shaped floating perforated breakwater are closely related to the incident wavelength, the draft and the porosity of the breakwater.  相似文献   

5.
A numerical model is developed that can predict the interaction of regular waves normally incident upon a curtainwall-pile breakwater; the upper part of which is a vertical wall and the lower part consists of an array of vertical piles. The numerical model is based on an eigenfunction expansion method, and utilizes a boundary condition nearby the vertical piles that accounts for wave energy dissipation. Numerical solution comprises a finite number of terms, which is a superposition of propagating waves and a series of evanescent waves. The modeling is validated by comparison with previous experimental studies and overall agreement between measurement and calculation is fairly good. The numerical results are related to reflection, transmission, and dissipation coefficient; wave run-up, wave force, and wave overturning moment are also presented. Effect of porosity, relative draft, and relative water depth are discussed; the choice of suitable range of them is described. The relative draft is more effective for shallow water waves. Model shows decrease in relative draft and leads to reduction of relative wave force, overturning moment, and runup. It is shown that curtainwall-pile breakwaters can operate both effectively and efficiently in the range of relative draft between 0.15 and 0.75. The range 0.5 to 0.2 is also recommended for porosity.  相似文献   

6.
In this paper, a numerical model is established. A modified N-S equation is used as a control equation for the wave field and porous flow area. The control equations are discreted and solved by the finite difference method. The free surface is tracked by the VOF method. The pressure field and velocity field of the whole flow area are solved by the reiterative iteration method. Finally, compared with the physical model test results of wave flume, the numerical model established in the present study is validated.  相似文献   

7.
A non-traditional fuzzy quantification method is presented in the modeling of an extreme significant wave height. First, a set of parametric models are selected to fit time series data for the significant wave height and the extrapolation for extremes are obtained based on high quantile estimations. The quality of these results is compared and discussed. Then, the proposed fuzzy model, which combines Poisson process and generalized Pareto distribution(GPD) model, is applied to characterizing the wave extremes in the time series data. The estimations for a long-term return value are considered as time-varying as a threshold is regarded as non-stationary. The estimated intervals coupled with the fuzzy theory are then introduced to construct the probability bounds for the return values. This nontraditional model is analyzed in comparison with the traditional model in the degree of conservatism for the long-term estimate. The impact on the fuzzy bounds of extreme estimations from the non stationary effect in the proposed model is also investigated.  相似文献   

8.
The coupling numerical model of wave interaction with porous medium is used to study waveinduced pore water pressure in high permeability seabed.In the model,the wave field solver is based on the two dimensional Reynolds-averaged Navier-Stokes(RANS) equations with a k-ε closure,and Forchheimer equations are adopted for flow within the porous media.By introducing a Velocity-Pressure Correction equation for the wave flow and porous flow,a highly efficient coupling between the two flows is implemented.The numerical tests are conducted to study the effects of seabed thickness,porosity,particle size and intrinsic permeability coefficient on regular wave and solitary wave-induced pore water pressure response.The results indicate that,as compared with regular wave-induced,solitary wave-induced pore water pressure has larger values and stronger action on seabed with different parameters.The results also clearly show the flow characteristics of pore water flow within seabed and water wave flow on seabed.The maximum pore water flow velocities within seabed under solitary wave action are higher than those under regular wave action.  相似文献   

9.
A series of regular and irregular wave experiments are conducted to study the reflective and transmitting performances of quarter circular breakwater (QCB) in comparison with those of semi-circular breakwater (SCB). Based on regular wave tests, the reflection and transmission characteristics of QCB are analyzed and a few influencing factors are investigated. Then, the wave energy dissipation as wave passing over the breakwater is discussed based on the hydraulic coefficients of QCB and SCB. In irregular wave experiments, the reflection coefficients of QCB and their spectrums are studied. Finally, the comparisons between the experimental results and numerical simulations for QCB under regular and irregular wave conditions are presented.  相似文献   

10.
When studying the harbor water tranquility, cases are often confronted as that the verification point is not located on the generation line or that the angle between the generation line and the isobath is so large that the differences of the wave climates along the generation line can not be ignored. For these cases, the incident boundary conditions are difficult to evaluate. In order to solve this problem, a combined wave model is developed in the present paper based on the Boussinesq equation and the wave action balance equation. Instead of the one-line wave generation method, a multi-line generation method is proposed for the combined model. Application of this method is given to a case that the harbor is designed with two entrances and the angle between the generation line and the isobath is large and the results are shown reasonable. We suggest that the wave generation method on multi-lines might also be introduced to the wave physical model as the replacement for the one-line generation method.  相似文献   

11.
A series of physical tests are conducted to examine the characteristics of the wave loading exerted on circular-front breakwaters by regular waves.It is found that the wave trough instead of wave crest plays a major role in the failure of submerged circular caissons due to seaward sliding.The difference in the behavior of seaward and shoreward horizontal wave forces is explained based on the variations of dynamic pressure with wave parameters.A wave load model is proposed based on a modified first-order solution for the dynamic pressure on submerged circular-front caissons under a wave trough.This wave loading model is very useful for engineering design.Further studies are needed to include model uncertainties in the reliability assessment of the breakwater.  相似文献   

12.
开孔沉箱在斜向入射波作用下受力研究   总被引:4,自引:1,他引:4       下载免费PDF全文
应用透空壁内流体速度与壁两侧的压力差成正比的线性模型,研究了斜向波与无限多个开孔沉箱的相互作用.依照结构物的几何形状,把整个流域分成无限多个子域,在每个子域内应用特征函数展开法对速度势进行展开.对于沉箱内的波浪运动,引入相位差概念;在构造反射波模型时,考虑了结构物的几何形状影响.列举出物理模型实验结果与数值实验结果的比较,可以看出两者吻合较好.进一步的数值计算验证表明,当孔隙系数无限大时,开孔墙前后的速度非常接近.在低频入射波作用下,垂直于沉箱的水平力随角度的变大而减小,平行于沉箱排列方向的力则变大.  相似文献   

13.
通过正向与斜向波浪对半圆型防波堤(不开孔出水堤)的实验研究,给出了其水力特性及单位堤长所受的无因次水平波浪力、竖向波浪力和波浪浮托力随各主要影响因素的变化规律,特别指出了斜向波浪力可大于正向波浪力及水平波浪力中波谷作用大于波峰作用发生的条件。  相似文献   

14.
Wave Forces on Submerged Semi-Circular Breakwater and Similar Structures   总被引:6,自引:0,他引:6  
—The results of design and experiment of a submerged semi-circular breakwater at the Yangtzeestuary show that the submerged structure will be unsafe when the general empirical wave force formulafor semi-circular breakwater is used in design.Therefore,a new calculation method for the wave forces act-ing on a submerged semi-circular structure is given in this paper,in which the wave force acting on the in-side circumference of semi-circular arch is included,and the phase modification coefficient in the generalempirical formula is adjusted as well.The new wave force calculation method has been verified by the re-sults of seven related physical model tests and adopted in the design of the south esturary jetty of the firststage project of Deep Channel Improvement Project of the Yangtze River Estuary,the total jetty length be-ing 17.5km.  相似文献   

15.
D.-S. Hur  K.-H. Lee  G.-S. Yeom   《Ocean Engineering》2008,35(17-18):1826-1841
In designing the coastal structures, the accurate estimation of the wave forces on them is of great importance. In this paper, the influences of the phase difference on wave pressure acting on a composite breakwater installed in the three-dimensional (3-D) wave field are studied numerically. We extend the earlier model [Hur, D.S., Mizutani, N., 2003. Coastal Engineering 47, 329–345] to simulate 3-D wave fields by introducing 3-D Navier–Stokes solver with the Smagorinsky's sub-grid scale (SGS) model. For the validation of the model, the wave field around a 3-D asymmetrical structure installed on a submerged breakwater, in which the complex wave deformations generate, is simulated, and the numerical solutions are compared to the experimental data reported by Hur, Mizutani, Kim [2004. Coastal Engineering (51, 407–420)]. The model is then adopted to investigate 3-D characteristics of wave pressure and force on a caisson of composite breakwater, and the numerical solutions were discussed with respect to the phase difference between harbor and seaward sides induced by the transmitted wave through the rubble mound or the diffraction. The numerical results reveal that wave forces acting on the composite breakwater are significantly different at each cross-section under influence of wave diffraction that is important parameter on 3-D wave interaction with coastal structures.  相似文献   

16.
17.
基于粘性流模型的筒型基础防波堤波浪力数值分析   总被引:3,自引:0,他引:3  
筒型基础防波堤是一种新型港口海岸工程结构,其基础上部是由连续排列的圆筒构成的直立防浪墙.采用粘性流数值模型,研究连续圆筒防波堤上波浪力竖向分布、水平(沿圆筒环向)分布和波浪力合力特性,并对粘性流数值模型计算的平面直墙波浪力与海港水文规范方法计算结果;粘性流数值模型计算的连续圆筒墙面波浪力与平面直墙波浪力;无限长连续圆筒墙面波浪力与有限长连续圆筒墙面波浪力进行比较分析.针对所选工程算例,建议按<海港水文规范>中平面直墙波浪力计算方法确定连续圆筒防波堤上的波浪力时,波峰时考虑0.90左右的折减系数,波谷时考虑0.95左右的折减系数.  相似文献   

18.
This paper discusses some previous, and presents some new experimental results on wave transmission over submerged breakwaters. The objective of this study is to evaluate wave transmission coefficient and develop a two-dimensional (2D) model as an improvement to the existing wave transmission coefficient models. Factors which affect wave transmission over stbmerged breakwaters are discussed through a series of laboratory experiments. Basic recommendations for evaluation and design of submerged rubble-monud breakwaters are presented. From the test results, a calculation formula of wave transmission coefficient is proposed.  相似文献   

19.
The numerical and experimental investigations on the performance of an offshore-submerged breakwater in reducing the wave forces and wave run-up on vertical wall are presented. A two-dimensional finite-element model is employed to study the hydrodynamic performance of the submerged breakwater under the action of regular and random waves. The numerical prediction has been supported with experimental measurements. The wave forces and wave run-up on the vertical wall were measured for different breakwater configurations. The applicability of linear theoretical model in the prediction of wave forces on the wall by a submerged breakwater has been discussed.  相似文献   

20.
柔性水囊潜堤由橡胶制成,内部充水,具有结构简单、造价低廉等优点,能较好满足人工岛、跨海桥梁、海洋平台等基础设施建设工程对简单便携、拆装方便的临时防波堤的需求。为了探究柔性水囊潜堤的消波特性,在溃坝水槽内开展溃坝波与半圆柱形柔性水囊潜堤相互作用的试验研究,重点探究柔性水囊潜堤与溃坝波相互作用过程中水位变化特性,并与半圆柱刚性潜堤的性能进行比较;同时分析柔性水囊潜堤内部初始水压和浸没深度等参数对其消波性能的影响。结果表明:柔性水囊潜堤能够用作临时防波堤来衰减波浪;与半圆柱刚性潜堤相比,柔性水囊潜堤在降低溃坝波无量纲最大水位、提高消波性能方面更具优势;内部初始水压是影响柔性水囊潜堤消波性能的重要因素,适当降低内部初始水压,有利于增强柔性潜堤的变形程度,进而增加波能耗散,可获得更好的消波效果;而增加浸没深度即潜深,会使得柔性水囊潜堤对溃坝波的影响程度降低,消波效果减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号