首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The dependence of the angular spreading on frequency and wind-wave growth status is discussed in great detail for the proposed spectrum. The calculated angular spreading agrees with the measurements of Donelanet al. but is slightly broader. Explanation is given to the appearance of the narrowest spreading at a frequency slightly smaller than that of the wind-wave frequency spectrum peak as found by these authors. There is also basic agreement between the calculated spreading and the formulas of Mitsuyasuet al. and Hasselmannet al. for the specific wind-wave status on which these empirical formulas are based, though the former is narrower. The wind-wave frequency spectrum obtained by integrating the proposed directional spectrum with respect to direction agrees with the JONSWAP spectrum and that derived by the authors previously. The proposed spectrum is preliminarily verified with field data obtained by optical method.Project supported by the National Natural Science Foundation of China.  相似文献   

2.
In contrast with the usual method to obtain the wind-wave directional spectrum by multiplying the frequency spectrum with an empirical directional function, the authors attempt to derive analytically the directional spectrum by adopting proper spectral form and using effective parameters, namely, the zero order momentm 0 of the wind-wave frequency spectrumS(), its peak frequency 0 and the so-called peakness factorP=0 S(0)/m 0, where is angular frequency. The directional spectrum is given in a form of frequency spectrum for each direction. The spectral directionality depends on, in addition to frequency, the wind-wave growth status, for the peakness factorP as introduced by the authors previously is a measure of the wave development stage. The salient features of the directional spectrum, comparison with existing formulas and the verification of the spectrum by observational data are to be given in the Part 2 of the paper.Project supported by the National Natural Science Foundation of China.  相似文献   

3.
ApplicationofthefourmodelsofdirectionalspectraintheBohaiSea¥WuXiujieandTengXuechun(FirstInstituteofOceanography,StateOceanicA...  相似文献   

4.
The paper discusses the development of a frequency dependent directional spread from an initial condition of frequency-independence. The study applies basin directional measurements from the Maritime Research Institute Netherlands (MARIN), simulated data from a nonlinear wave equation, and field measurements from the Ekofisk field. The basin experiments and numerical simulations are initialized with a JONSWAP spectrum with frequency-independent directional distributions. In both cases we observe the development of a strong frequency-dependence of the directional spread. The numerical simulations suggest that static nonlinear contributions to the surface elevation partially explain the behavior below the spectral peak in accordance with [1]. There are also dynamic nonlinear contributions on both sides of the spectral peak.  相似文献   

5.
Based on the data of the Jiaozbou Bay Ecosystem Dynamic Research,cell volume and surface area of 87 common phytoplankton species in China sea waters were calculated with assignment of the similar geometric form.The cell plasma volume,live weight,carbon mntent and nitrogen content were also calculated with the methods of Mullin et al.(1966),5trathmann(1967),Eppley et al.(1970),arid Taguchi(1976).After comparing these methods,we chose the method of Eppley et al.(1970) as the best method for calculating phytoplankton carbon content in China sea waters.  相似文献   

6.
Improved form of wind wave frequency spectrum   总被引:5,自引:0,他引:5  
The lower frequency part of the theoretical wind wave spectrum proposed by the authors (Wen et al. , 1988a, b,c) has been improved and the form of spectrum is appreciably simplified. In addition to the field data collected in the Bohai Sea region and used in the previous papers, those obtained in the Huanghai Sea, the East China Sea and the South China Sea have been employed so that the improved spectra can be verified on a more extensive observational basis. Computed results agree with the observations well. Further comparisons have been made between the proposed spectra and the JONSWAP spectrum. Though the two types of spectrum are close to each other in form, the former shows, as a whole, better agreement with the observation than the latter. By introducing an improved relation between the peak-ness factor and significant wave steepness, the spectrum contains only significant wave height and period as parameters. For spectra given in this form, the computed peak frequencies coincide approximately wit  相似文献   

7.
The directional spreading of both the wavenumber and frequency spectra of finite-depth wind generated waves at the asymptotic depth limit are examined. The analysis uses the Wavelet Directional Method, removing the need to assume a form for the dispersion relationship. The paper shows that both the wavenumber and frequency forms are narrowest at the spectral peak and broaden at wavenumbers (frequencies) both above and below the peak. The directional spreading of the wavenumber spectrum is bi-modal above the spectral peak. In contrast, the frequency spectrum is uni-modal. This difference is shown to be the result of energy in the wind direction being displaced from the linear dispersion shell. A full parametric relationship for the directional spreading of the wavenumber spectrum is developed. The analysis clearly shows that typical dispersion relationships are questionable at high frequencies and that such effects can be significant. This result supports greater attention being focussed on the routine recording of wavenumber spectra, rather than frequency spectra.  相似文献   

8.
海浪双峰方向分布的一种物理解释   总被引:3,自引:0,他引:3  
用 18个波高计组成的直径为 40cm的圆形阵列在大型风浪槽内系统地测量了风浪和涌浪方向谱。用两种分辨力较高的方向谱估计方法最大似然法(MLM)和贝叶斯方法(BDM)分析的结果表明:风浪高频域出现的依赖于估计方法的双峰方向分布是一种物理假象;在较成长的涌浪低频域,得到跟传播方向对称、两峰间隔大约60°-90°非常规则的双峰方向分布,它跟频率和涌浪的成长状态有关,而跟估计方法无关,这种现象可以用非线性波-波相互作用过弱,在不同方向之间不能有效传递能量来解释。  相似文献   

9.
This paper describes wave directional spreading in shallow water. Waves were measured for a period of 2 months using the Datawell directional waverider buoy at 15 m water depth on the east coast of India in the Bay of Bengal. The study also showed that in shallow water wave directional spreading was narrowest at peak frequency and widened towards lower and higher frequencies. The wind direction was found to deviate from the wave direction during most of the time. The unidirectional spectrum was found to be satisfactorily represented by Scott spectra.  相似文献   

10.
The characteristics of directional spread parameters at intermediate water depth are investigated based on a cosine power ‘2s' directional spreading model. This is based on wave measurements carried out using a Datawell directional waverider buoy in 23 m water depth. An empirical equation for the frequency dependent directional spreading parameter is presented. Directional spreading function estimated based on the Maximum Entropy Method is compared with those obtained using a cosine power ‘2s' parameter model. A set of empirical equations relating the directional spreading parameter corresponding to the peak of wave spectrum to other wave parameters like significant wave height and period are obtained. It shows that the wave directional spreading at peak wave frequency can be related to the non-linearity parameter, which allows estimation of directional spreading without reference to wind information.  相似文献   

11.
On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the time scale of the response is not only related to the rate of wave growth, but also to the directional energy distribution and the angle between the wind direction and the mean wave direction. Furthermore, the law of change in the mean wave direction has been derived. The numerical computations show that the response of wave directions to slowly turning wind directions can be treated as the superposition of the responses of wave directions to a series of sudden small-angle changes of wind directions and the turning rate of the mean wave direction depends on the turning rate and the total turning angles of the wind direction. The response of wave directions is in agreement with the response for a sudden change of wind directions if the change in wind directions is very fast. Based on the no  相似文献   

12.
In this part ot the paper theoretical wind-wave spectra nave been derived oy (I) expressing the spectrum in series composed of exponential terms; (2) assuming that the spectrum satisfies a high order linear ordinary differential equation; (3) introducing proper parameters in the spectrum; and (4) making use of some known charateristics of wind-wave spectrum, for instance, the law governing the equilibrium range. The spectrum obtained contains the zero order moment of the spectrum m0, the peak frequency ω0 and the ratio R =ω/ω0 (ω being the mean zero-crossing frequency) as parameters. The shape of the nondimensional spectrum S(ω) = ω0S(ω)/m0(ω=ω/ω0) changes with R and theoretically reduces to a Dirac delta function δ(ω-1) when R = 1. A spectrum of simplified form is given for practical uses, in which R is replaced by a peakness factor P=S(1).  相似文献   

13.
A PARAMETRIC MODEL FOR THERMAL STRUCTURE FEATURES OF THE OCEAN UPPER LAYER   总被引:1,自引:0,他引:1  
Based on the non-dimensional general function for the thermal structure features presented by S. A. Kitaigorodsky et al. (1963, 1965)[10,11]. this paper tries to establish semi-empirical and semi-theoretical models bfor the thickness of the upper homogeneous layer of the ocean, thermocline intensity and lower oundary depth of thermocline by consecutive observations from 159 stations in the Bohai Sea,Huanghai Sea and East China Sea in the warm half of the years from 1957 to 1964 and the heat budget at the sea surface computed with the simplified computing formulae proposed by Wang (1983)[22]. This model indicates the main factors forming the thermal structure features in the upper layer of the ocean and their function. With the model, one can directly use the sea surface temperature, air temperature and wind speed to compute the thermal feature in the upper layer of the ocean.  相似文献   

14.
A numerical scheme for calculating the nonlinear energy transfer among wind waves (RIAM method) was developed on the basis of the rigorous method of Masuda. Then the performance of the RIAM method was examined by applying it to various forms of wind-wave spectra and different situations of wind-wave evolution, in comparison mainly with the WAM method. The computational time of the Masuda method was reduced by a factor of 300 by the RIAM method, which is still 2000 times slower than the WAM method simply because the RIAM method processes thousands of resonance configurations whereas the WAM method does only one. The RIAM method proves to give accurate results even for spectra of narrow band widths or bimodal spectra, whereas the WAM method often calculates an unrealistic magnitude and pattern of nonlinear energy transfer functions. In the duration-limited evolution of wind-wave spectra, the RIAM method yields a unimodal directional distribution on the low-frequency side of the spectral peak, whereas the WAM method produces a spurious bimodal one there. At higher frequencies, however, both methods give a bimodal directional distribution with two oblique maxima. The RIAM method enhances the growth of the total energy and peak period of wind waves in comparison with the WAM method. Nevertheless, Toba's constant of his 3/2-power law approaches almost the same standard value of 0.06 in both methods. For spectra of a narrow band width or for those perturbed by a small hump or depression, the RIAM method tends to recover the monotonic smoother form of spectrum whereas the WAM method often yields unrealistic humps or depressions.  相似文献   

15.
Directional wave spectra measured by a cloverleaf buoy in the East China Sea during AMTEX '75 have been compared with those calculated with the operational numerical MRI wave model developed at the Meteorological Research Institute of the Japan Meteorological Agency (J.M.A.). It is shown that the numerical wave model MRI can predict rather well, not only the frequency spectrum, but also the angular distribution function of the spectrum. The frequency dependence of the calculated angular distribution function is quite similar to that observed; the angular distribution is narrower for the spectral components near the peak spectral frequency but widens toward high frequencies and approaches the cos2-distribution.  相似文献   

16.
This paper proposes the following generalized representation for a wind-wave frequency spectrum:
where E = ∫S(f)df is the variance of the surface displacement; fm is the frequency of the spectral peak; and Ci's, i = 1,2,3, are dimensionless parameters that can be determined from the internal spectral parameters of a given spectrum.When applied to 234 sets of wave spectra recorded in the Great Lakes, this representation has been realistic, accurate, and capable of representing widely varied wave processes. The Ci's are clearly related to wave growth processes; they are large during early growth, decrease as waves grow, and reach approximate equilibrium when waves are fully developed.  相似文献   

17.
Based on the non-Gaussian joint elevation and slope density function developed by Huang et al. (1984), the expected number of threshold crossing at an arbitrary level for a nonlinear wave field is derived. The distribution of the expected threshold crossing per unit time as a function of the crossing level is skewed with respect to the mean water level. This skewness also causes the mean zero crossing per unit time to deviate from the expected frequency of the wave field.  相似文献   

18.
Local balance in the air-sea boundary processes   总被引:2,自引:0,他引:2  
A combination of the three-second power law, presented in part I for wind waves of simple spectrum, and the similarity of the spectral form of wind waves, leads to a new concept on the energy spectrum of wind waves. It is well substantiated by data from a wind-wave tunnel experiment.In the gravity wave range, the gross form of the high frequency side of the spectrum is proportional tog u * –4, whereg represents the acceleration of gravity,u * the friction velocity, the angular frequency, and the factor of proportionality is 2.0×l0–2. The wind waves grow in such a way that the spectrum slides up, keeping its similar form, along the line of the gross form, on the logarithmic diagram of the spectral density,, versus. Also, the terminal value of, at the peak frequency of the fully developed sea, is along a line of the gradient ofg 2 –5.The fine structure of the spectrum from the wind-wave tunnel experiment shows a characteristic form oscillating around the –4-line. The excess of the energy density concentrates around the peak frequency and the second- and the third-order harmonics, and the deficit occurs in the middle of these frequencies. This form of the fine structure is always similar in the gravity wave range, in purely controlled conditions such as in a wind-wave tunnel. Moving averages of these spectra tend very close to the form proportional to –5.As the wave number becomes large, the effect of surface tension is incorporated, and the –4-line in the gravity wave range gradually continues to a –8/3-line in the capillary wave range, in accordance with the wind-wave tunnel data. Likewise, the –5-line gradually continues to a –7/3-line.Also, through a discussion on these results, is suggested the existence of a kind of general similarity in the structure of wind wave field.  相似文献   

19.
A procedure for estimating directional wave spectra from an array of wave probes based on the Maximum Entropy Method (MEM) is developed in the present paper. The MEM approach yields an angular spreading function at each frequency band consistent with the input cross-spectral density matrix. The method is evaluated using numerical simulations of directional sea states. The MEM is also used to analyze data obtained from the three-dimensional wave basin of the Hydraulics Laboratory, National Research Council of Canada. Finally, the MEM is compared with the Maximum Likelihood Method (MLM) and is shown to be a powerful tool for directional wave analysis.  相似文献   

20.
海浪方向谱估计方法的比较   总被引:7,自引:3,他引:4  
分别利用数值模拟和实测资料对目前被认为分辨力较高的最大似然法(MLM)、扩展本征矢方法(EEV)、扩展最大滴方法(EMEP)以及贝叶斯方法(BDM)等四种海浪方向谱估计方法的可靠性进行了分析,从不同频率、不同噪声水平和不同方向集中度三个角度检验其再现性、稳定性和实用性,结果表明MLM、EEV和BDM大致给出相同的方向分布,其中BDM的再现性最好,但实用性逊于MLM和EEV,EMEP由于稳定性差,不适用于实测资料的分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号