首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
基于2011年7月藻类培养实验期间的实测数据研究了强壮前沟藻Amphidinium carterae Hulburt生消过程中水体的总吸收特性。结果表明,强壮前沟藻本次培养周期共21天,前15天为生长期,之后进入消亡期;整个生消过程中水体吸收光谱变化明显,未见440nm 波段浮游藻类蓝光吸收峰,但675nm 波段红光吸收峰突出,消亡期总吸收系数的日变化明显大于生长期,总吸收系数与叶绿素浓度的时间序列变化趋势一致;总吸收系数的波段关系良好,但不同生长时期相同波段的拟合曲线存在显著差别,消亡期的拟合曲线普遍高于生长期,且整体看来随波长增加,两曲线逐渐接近,到667、678nm 波段时几乎重合;特征波段(440、675nm)的总吸收系数与叶绿素浓度存在较好的乘幂函数关系,拟合曲线与藻种的生长阶段有关,决定系数均在0.98以上。  相似文献   

2.
微囊藻和栅列藻吸收与散射特性的实验研究   总被引:1,自引:0,他引:1  
利用分光光度计,分别检测不同浓度梯度的微囊藻和栅列藻的光束衰减系数、吸收系数等。根据线性加和关系计算出2种藻的散射系数。结果表明,400~650 nm光束衰减系数大致呈下降趋势,之后又逐渐上升.在675 nm附近出现由于浮游植物吸收而形成的峰值,微囊藻、栅列藻的c*(675)分别为(0.075±0.007)m~(-1)、(0.079±0.007)m~(-1)。微囊藻、栅列藻吸收系数、比吸收系数在440、675 nm存在明显的吸收峰值,PAR波段积分平均比吸收系数分别为0.0172、0.0178 m~2/(mgCh1a)。散射系数在440、675 nm一般出现谷值,而在550、700 nm一般为峰值。微囊藻、栅列藻PAR波段积分平均比散射系数分别为0.0686、0.0737 m~2/ (mgCh1a),比散射系数明显大于比吸收系数。另外,栅列藻比散射系数均要大于微囊藻.而其比吸收系数则差异不明显。微囊藻、栅列藻吸收系数与叶绿素a浓度存在非常好的线性关系,显示其不存在色素包裹效应。微囊藻、栅列藻平均Q*.值分别为1.13、1.19.均大于1.包襄因子的分析也证明不存在色素包裹效应。实验条件下得到比吸收系数、比散射系数可以用于计算浮游植物的吸收和散射系数。  相似文献   

3.
浮游植物色素吸收与叶绿素a浓度关系研究是水色遥感生物-光学算法开发的重要组成部分,我们利用HD200304航次和HD200309航次的测量数据,开发了色素吸收系数的波段关系模型(αφ(λ)-αφ(675))和色素吸收系数与叶绿素a浓度关系(αφ(λ)-αφ(675))模型,并在模型开发的基础上,利用叶绿素a浓度反演典型波段的色素吸收系数,效果良好。  相似文献   

4.
强壮前沟藻生消过程中水色组分吸收特性   总被引:1,自引:0,他引:1       下载免费PDF全文
依据2011-07强壮前沟藻藻种培养实验期间的实测数据,分析了其生消过程中各水色组分的吸收特性。结果表明:在生消过程的始末阶段,以非色素颗粒物和有色可溶性有机物(CDOM)吸收为主,中间阶段,则以浮游植物吸收为主。浮游植物吸收光谱在440nm和675nm存在明显的特征峰;在整个生消周期内先上升后降低,直至消失;非色素颗粒物和CDOM吸收光谱随波长增加均呈指数衰减趋势,前者光谱幅高先增后减,但后者变化无明显规律。各水色组分与叶绿素质量浓度均存在一定的相关关系,无论在生长期或是消亡期,浮游植物、非色素颗粒物吸收系数与叶绿素质量浓度存在正相关关系;但CDOM吸收系数与叶绿素质量浓度在生长期存在正相关关系,而在消亡期变为负相关关系。这可作为改进赤潮水体叶绿素质量浓度遥感算法、有效判别赤潮以及识别赤潮优势藻种等的科学依据。  相似文献   

5.
珠江口颗粒物吸收系数与盐度及叶绿素a浓度的关系   总被引:7,自引:0,他引:7  
海水中总颗粒物的吸收系数可表达成非藻类颗粒物与浮游植物的吸收系数之和,利用可定量测量的滤膜技术(QFT)测定水体中颗粒物光谱吸收系数。非藻类颗粒物的吸收系数随着波长的增大而减小,可用指数衰减规律来描述;光谱斜率S较离散,但平均值与文献报道的一类水体S的平均值很接近;光谱截距ad0(λ0)随盐度增大而减小,二者有很好的线性关系。浮游植物的比吸收系数和叶绿素a浓度之间存在非线性关系,但是,比吸收系数与叶绿素a浓度之间的非线性关系同时还与波长有关,在叶绿素a的2个吸收峰443nm和670nm附近非线性关系特别明显,而在530-640nm之间两者的非线性关系则较弱。  相似文献   

6.
赤潮水体红光波段反射光谱中"荧光峰"的红移现象一直备受研究者的广泛关注。本文基于前向辐射传输模型,通过2011年7月9日在大连湾海域实测的赤潮水体吸收系数和后向散射系数模拟了弹性散射作用下的反射光谱,发现在未考虑叶绿素荧光的情况下,红光波段仍存在显著的反射峰,且随叶绿素浓度的增加,反射峰出现红移现象;加入叶绿素荧光后,模拟光谱红光波段反射峰的位置与高度出现不同程度的改变,与实测光谱的更接近;对比模拟光谱与实测光谱可确定,红光波段的反射峰由吸收、后向散射以及叶绿素荧光共同控制,而文献中通常提到的"荧光峰"红移实由浮游藻类红光波段的强吸收作用导致,与叶绿素荧光无关,因此反射峰红移的说法更为合理。  相似文献   

7.
在珠江口、广东沿岸及南海北部三个航次生物-光学数据的基础上,研究了色素打包效应和色素成分的变化对浮游植物吸收系数的影响,结果表明,两种因素对吸收系数都有较大的贡献,但在不同的水体它们的影响程度各有不同.对网采浮游植物含量较高的珠江口和广东沿岸的水体而言,色素打包效应较强,对675 nm处比吸收系数的贡献平均分别为40%和20%;对微型浮游植物占主导地位的南海北部航次的水体,打包效应较弱,对675 nm处比吸收系数的影响平均仅为6%.采用多元线性回归的方法对吸收光谱进行分析,发现除叶绿素a之外的辅助色素对吸收系数的贡献主要表现在蓝绿光波段,三个航次440 nm波长处对总吸收的贡献平均分别为44%,43%和53%,其中对珠江口和广东沿岸航次的水体主要是光合类胡萝卜素的吸收贡献,而对南海北部航次的水体除了光合类胡萝卜素以外还要受到光保护类胡萝卜素的影响.由于河口、近岸和外海水体藻类粒级结构和辅助色素成分对浮游植物吸收系数的贡献有明显的差异,在南海北部水体建立比较精确的生物光学模型时,需考虑藻类粒级结构及色素成分对浮游植物吸收系数的影响.  相似文献   

8.
两种水体吸收系数测量方法的比较研究   总被引:1,自引:0,他引:1  
基于2011年7月藻类培养实验期间的实测数据,对高光谱吸收衰减系数测量仪(AC-S)和紫外-可见分光光度计(UV2550)获取的水体吸收系数进行了比较分析.结果表明,短波波段AC-S测得吸收光谱曲线普遍低于UV2550测量结果,而长波波段恰恰相反;两种方法测量结果的相对误差基本可控制在±40%范围内;特征波段处,两种方法测量结果线性拟合的相关性较高,均可这98%以上,412 nm、440 nm、443nm波段斜率小于1,而488 nm、531nm、551 nm、667nm、675nm、678 nm波段斜率大于1.  相似文献   

9.
利用现场实测的表观光学量和固有光学量数据,得到了我国黄海、东海近岸二类水体多个波段的总吸收系数的统计反演模式。此反演模式采用412/555、490/555两个波段遥感反射比比值的二项式,得到波长412、440、488、510、532、555nm处的总吸收系数,其反演值和实测值的平均相对误差不大于25.8%,相关系数R2达到了0.75到0.85。水体总吸收系数几种统计模型的误差敏感性分析表明,反演模式对±5%的遥感反射比输入误差导致结果增加误差最大为24.0%,因此反演模式是可用的。同时给出了412、488、510、532、555nm各波段的总吸收系数同波段440nm的总吸收系数之间的关系。结果表明,在400—600nm波段范围内,每一个波段的总吸收系数与440nm波段的总吸收系数的相关性均较高,相关系数R2都超过了0.99。通过对拟合直线的斜率与波长进行回归,得到斜率和波长的关系,其相关系数R2为0.99,这样利用本文中建立的各波段总吸收系数关系模型,可以从一个已知波段的总吸收系数反演出任何另外一个波段的总吸收系数,这就在水色反演与应用中大大减少了未知因子的个数。  相似文献   

10.
采用现场实测和室内培养两种方式测定了甲藻、赤潮异弯藻、叉角藻、海洋蓝绿藻等赤潮和新月菱形藻、叉鞭金藻、塔胞藻、扁藻和小球藻等非赤潮藻类光谱曲线.采用度量太阳激发的叶绿素荧光峰高度的归一化荧光高度法,建立了不同藻类归一化荧光高度与叶绿素浓度的关系.荧光高度计算方法是将红光波段的反射率最大值(Rmaxred)和R685分别归一化到560 nm处的R560和560 nm附近整个光谱曲线的最大值R560 max上或675 nm处的R675和675 nm附近的最小值R675mini上.结果表明,不同藻类的Rmaxred/R560max和Rmaxred/R675mini与叶绿素a的相关系数分别比R685/R560和R685/R675与叶绿素的相关系数高,但在海洋现场测量中由于近岸二类水体其他水色组分以及大气校正误差的影响,Rmaxred/R675mini和R685/R675更适合于实测的叶绿素浓度估算.采用三种统计回归方程建立了不同藻类归一化荧光高度与叶绿素浓度关系,除个别藻种外,大部分的相关系数在0.9以上,其中FLH=a+(Chla)b回归方程得到的相关系数优于其他两种方法,相关系数大于0.93,这表明藻类水体的荧光特性和叶绿素浓度之间的普遍关系是非线性的.  相似文献   

11.
Data from three cruises conducted in the Zhujiang River (ZR), coastal waters of Guangdong (CWGD) and the northern South China Sea (NSCS) during 2003 and 2004 were examined for assessing the relative importance of pigment composition and packaging effect in modifying the specific absorption coefficients of phytoplankton. The three survey regions differ widely in their phytoplankton community with large cells dominating the ZR and CWGD waters and small cells dominating the NSCS region. Variations in the size structure and the accessory pigments have much effect on the chlorophyll a-specific absorption coefficient of phytoplankton. The size index accounted for about 42% and 33% of the variation of the specific absorption coefficient at 440 and 675 nm, respectively. Using the multiple regression analysis approach, pigment concentrations for each sample were calculated. The accessory pigments other than chlorophyll a contribute to absorption mainly in the blue-to-green region of the spectrum and their absorptions account for about 44%, 43% and 53% on the average of the total phytoplankton absorption at 440 nm for the ZR, CWGD and NSCS regions. Among the accessory pigments, the photosynthetic carotenoids (noted PSC) play a dominant role in the ZR and CWGD waters, while in the NSCS the nonphotosynthetic carotenoids (noted PPC) as well as PSC have important contributions. Because the variations of both the size structure and accessory pigments in algal populations contributed to the variability of the specific absorption coefficient in the study regions, these factors may be considered explicitly in future bio-optical algorithms to derive chlorophyll a concentration more accurately.  相似文献   

12.
The hydrographic and bio-optical properties of the Bering Sea shelf were analyzed based on in-situ measurements obtained during four cruises from 2007 to 2009. According to the temperature and salinity of the seawater, the spring water masses on the Bering Sea shelf were classified as the Alaskan Coast Water, Bering Sea Shelf Water, Anadyr Water, Spring Mixed Layer Water, Remnant Winter Water, and Winter Water, each of which had varying chlorophyll a concentrations. Among them, the highest chlorophyll a concentration occurred in the nutrient-rich Anadyr Water ((7.57±6.16) mg/m3 in spring). The spectrum-dependent diffuse attenuation coefficient (Kd(λ)) of the water column for downwelling irradiance was also calculated, exhibiting a decrease at 412–555 nm and then an increase within the range of 0.17–0.48 m–1 in spring. Furthermore, a strong correlation between the chlorophyll a concentration and the attenuation coefficient was found at visible wavelengths on the Bering Sea shelf. Spatially, the chlorophyll a concentration was higher on the northern shelf ((5.18±3.78) mg/m3) than on the southern shelf ((3.64±2.51) mg/m3), which was consistent with the distribution of the attenuation coefficient. Seasonally, the consumption of nutrients by blooms resulted in minimum chlorophyll a concentration ((0.78±0.51) mg/m3) and attenuation coefficient values in summer. In terms of the vertical structure, both the attenuation coefficient and the chlorophyll a concentration tended to reach maximum values at the same depth, and the depth of the maximum values increased as the surface temperature increased in summer. Moreover, an empirical model was fitted with a power function based on the correlation between the chlorophyll a concentration and the attenuation coefficient at 412–555 nm. In addition, a spectral model was constructed according to the relationship between the attenuation coefficients at 490 nm and at other wavelengths, which provides a method for estimating the bio-optical properties of the Bering Sea shelf.  相似文献   

13.
基于2007年8月海洋光学浮标在珠江口投放期间获得的近16天的实测生物光学数据, 对一次藻华过程中水体总吸收系数和水色光谱的变化特性及其相互关系进行了研究。结果表明, 藻华前后水体中非藻类物质尤其是有色溶解有机物在蓝光波段具有较强的吸收贡献, 而当藻华爆发时, 随着叶绿素a浓度的急剧增大, 浮游植物的吸收贡献明显增强; 各波段之间总吸收系数呈现出较好的线性相关关系, 吸收光谱蓝绿波段比值的变化对遥感反射率的光谱分布有重要的贡献; 据此建立了对水体总吸收系数反演的经验关系模型, 表现出较高的反演精度, 计算值与实测值之间相对偏差的均方根在可见光波段可控制在24%以内。  相似文献   

14.
The diffuse attenuation coefficient(Kd) for downwelling irradiance is calculated from solar irradiance data measured in the Arctic Ocean during 3rd and 4th Chinese National Arctic Research Expedition(CHINARE), including 18 stations and nine stations selected for irradiance profiles in sea water respectively. In this study, the variation of attenuation coefficient in the Arctic Ocean was studied, and the following results were obtained. First, the relationship between attenuation coefficient and chlorophyll concentration in the Arctic Ocean has the form of a power function. The best fit is at 443 nm, and its determination coefficient is more than 0.7. With increasing wavelength, the determination coefficient decreases abruptly. At 550 nm, it even reaches a value lower than 0.2. However, the exponent fitted is only half of that adapted in low-latitude ocean because of the lower chlorophyll-specific absorption in the Arctic Ocean. The upshot was that, in the case of the same chlorophyll concentration, the attenuation caused by phytoplankton chlorophyll in the Arctic Ocean is lower than in low-latitude ocean. Second, the spectral model, which exhibits the relationship of attenuation coefficients between 490 nm and other wavelength, was built and provided a new method to estimate the attenuation coefficient at other wavelength, if the attenuation coefficient at 490 nm was known. Third, the impact factors on attenuation coefficient, including sea ice and sea water mass, were discussed. The influence of sea ice on attenuation coefficient is indirect and is determined through the control of entering solar radiation. The linear relationship between averaging sea ice concentration(ASIC, from 158 Julian day to observation day) and the depth of maximum chlorophyll is fitted by a simple linear equation. In addition, the sea water mass, such as the ACW(Alaskan Coastal Water), directly affects the amount of chlorophyll through taking more nutrient, and results in the higher attenuation coefficient in the layer of 30–60 m. Consequently, the spectral model of diffuse attenuation coefficient, the relationship between attenuation coefficient and chlorophyll and the linear relationship between the ASIC and the depth of maximum chlorophyll, together provide probability for simulating the process of diffuse attenuation coefficient during summer in the Arctic Ocean.  相似文献   

15.
水体吸收系数是影响水体光场分布的重要参数,在水色遥感探测中受到广泛关注。本文利用2012年9月辽东湾区域航次调查数据分析该区域水体各组分吸收系数的分布情况,结果表明,辽东湾水体中浮游植物含量相对较高。并利用该航次数据,建立了区域性半分析算法,该算法基于相邻波段间固有光学量的线性关系,首先通过遥感反射率反演得到550 nm波段的水体总吸收系数,再通过后向散射波段相关关系外推得到其他波段的总吸收系数。经独立测试数据检验,3个波段(412、443、550 nm)总吸收系数反演的平均相对误差分别为19.71%,17.99%,9.35%,说明区域性半分析算法能较好地估算研究区域的水体总吸收系数。本文还通过引入随机误差对算法稳定性进行了检验,结果表明算法具有较好的稳定性。  相似文献   

16.
Average values of inherent optical properties for the 400–700 nm waveband were estimated from quantum irradiance measurements on 27 New Zealand lakes of diverse optical character, using published nomograms. Secchi disc depths, turbidity, algal pigment, non‐volatile suspended solids, and absorption by membrane‐filtered samples at 440 nm (g 440 ) were also measured. Turbidity (NTU) correlated closely with the scattering coefficient (m‐1) and these quantities were almost numerically equal, as found in other studies. The data were found to conform to an expression in the oceanographic literature relating Secchi disc depth to the beam attenuation and diffuse attenuation coefficients. Specific beam attenuation, scattering, and absorption coefficients were estimated from the coefficients of linear multiple regressions of the measured total coefficients on the variables: total pigment (chlorophyll a + phaeopigment), non‐volatile suspended solids, and g 440. The estimated values were in reasonable agreement with similar specific coefficients reported in the oceanographic literature. The coefficients provide a basis for predicting clarity in new impoundments or for predicting the effects of loading changes (e.g., of nutrients) on the clarity of existing lakes. The coefficients can be used for classifying lake waters into different optical types.  相似文献   

17.
The East China Sea (ECS),one of the largest continental seas,has dynamic hydrology and complex optical characteristics that make ocean color remote-sensing retrieval difficult.The distributions and proportions of the light absorption coefficients of major ocean color components based on two large-scale investigations in the ECS are presented,showing these features in typical summer and winter seasons.The absorption coefficient a CDOM,a NAP and a phy of colored dissolved organic matter,non-algal particle,and pigment of phytoplankton show a decreasing trend from the coast to the outer shelf.According to the a CDOM distribution at 440 nm,the Changjiang River plume shows an abnormal southeastward transport.An extremely high a NAP value patch at 440 nm is present in the middle coast.The chlorophyll-a-specific phytoplankton pigment absorption (a phy) is much higher in winter than in summer,which may cause serious underestimated results when applying the averaged a phy into remote-sensing algorithms for chlorophyll concentration retrieval.The importance of phytoplankton size was evident in outer shelf waters.The absorption of a CDOM (440) is a dominant component accounting for over half of the total seawater absorption in summer.The a NAP (440) accounts for 64% of the absorption of the ECS coastal area in winter.  相似文献   

18.
Pigment patterns and associated absorption properties of phytoplankton were investigated in the euphotic zone along two meridional transects in the Atlantic Ocean, between the UK and the Falkland Islands, and between South Africa and the UK. Total chlorophyll a (TChla=MVChla+DVChla+chlorophyllide a) concentrations and the biomarker pigments for diatoms (fucoxanthin), nanoflagellates and cyanobacteria (zeaxanthin) appeared to have similar distribution patterns in the spring and in the autumn in the temperate NE Atlantic and the northern oligotrophic gyre. Divinyl chlorophyll a levels (prochlorophytes) were greater in spring at the deep chlorophyll maximum in the oligotrophic gyre, however. Marked seasonal differences were observed in the NW African upwelling region. TChla concentrations were twice as high in the upper mixed layer in the spring, with the community dominated by diatoms and prymnesiophytes (19′-hexanoyloxyfucoxanthin). A layered structure was prevalent in the autumn where cyanobacteria, diatoms and prymnesiophytes were located in the upper water column and diatoms and mixed nanoflagellates at the sub-surface maximum. In the South Atlantic, the Benguela upwelling ecosystem and the Brazil-Falklands Current Confluence Zone (BFCCZ) were the most productive regions with the TChla levels being twice as high in the Benguela. Diatoms dominated the Benguela system, while nanoflagellates were the most ubiquitous group in the BFCCZ. Pigment concentrations were greater along the eastern boundary of the southern oligotrophic gyre and distributed at shallower depths. Deep chlorophyll maxima were a feature of the western boundary oligotrophic waters, and cyanobacteria tended to dominate the upper water column along both transects with a mixed group of nanoflagellates at the chlorophyll maximum.Absorption coefficients were estimated from spectra reconstructed from pigment data. Although absorption was greater in the productive areas, the TChla-specific coefficients were higher in oligotrophic regions. In communities that were dominated by diatoms or nanoflagellates, pigment absorption was generally uniform with depth and attenuating irradiance, with TChla being the major absorbing pigment at 440 nm and photosynthetic carotenoids (PSC) at 490 nm. Absorption by chlorophyll c and photoprotective carotenoids (PPC) was much lower. Populations where cyanobacteria were prevalent were characterized by high PPC absorption, particularly at 490 nm, throughout most of the euphotic zone. The data suggested that the effect of pigments on the variability of phytoplankton absorption was due primarily to the variations in absorption by PPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号