首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
不同氮磷比对中肋骨条藻和威氏海链藻生长特性的影响   总被引:3,自引:0,他引:3  
实验室条件下用不同氮磷摩尔比(4:1,16:1,64:1)的培养液培养中肋骨条藻Skeletonema costatum和威氏海链藻Thalassiosira weissflogii,对它们的比生长率、细胞状态、细胞对外界氮磷营养元素的吸收和细胞内氮磷比的变化进行了研究.结果表明,氮磷比显著影响两种硅藻的生长和生理状态,氮浓度对细胞生长的影响更大.N限制组(N:P=4:1)的比生长率、细胞数量和叶绿素a含量明显低于正常条件和P限制组(N;P=64:1);威氏海链藻生长对N的变化比中肋骨条藻更为敏感,吸收外界无机氮的速率更快.营养盐充足的情况下,水体中藻细胞的氮磷比变化会较小,但由于"奢侈消费"现象的存在,在出现营养盐限制时,细胞的氮磷比组成会跟随环境的氮磷比改变,在氮限制的条件下,细胞的氮磷比会相应减少,而相反在磷限制的条件下,细胞的氮磷比会明显增加.  相似文献   

2.
氮磷营养盐对中肋骨条藻生长及硝酸还原酶活性的影响   总被引:3,自引:0,他引:3  
通过实验室培养,在不同氮磷浓度及氮磷比率的营养条件下,对中肋骨条藻(Skeletonema costatum)的生长及藻细胞硝酸还原酶的活性进行研究。实验结果表明,中肋骨条藻属于营养型藻类,氮磷营养盐的添加,极大地促进了藻细胞的增殖。在接种后的第4~5天,各培养组藻密度达到最大值并与对照组形成极显著性差异(P〈0.01)。实验进一步发现,环境中的氮、磷浓度及氮磷比率都会影响中肋骨条藻的生长及藻细胞硝酸还原酶活性(NRA)。此外,在各培养组中,中肋骨条藻硝酸还原酶活性的最大值(NRAmax)均出现在指数生长期(接藻后第1,2天),早于最大藻密度的出现时间(第4,5天),这表明藻对营养盐的同化速率与生长速率并不一致,后者存在一定的滞后效应。在本实验条件下,中肋骨条藻的硝酸还原酶活性存在一定的阈值。  相似文献   

3.
磷酸盐对两种东海典型赤潮藻影响的围隔实验   总被引:8,自引:0,他引:8  
采用了围隔生态实验方法,研究了围隔中营养盐含量及结构变化和磷酸盐对东海典型赤潮藻种(东海原甲藻和中肋骨条藻)生长的影响。结果表明,在高磷条件下,中肋骨条藻快速增殖,稳定期缩短,细胞数很快下降,而东海原甲藻由于氮源的限制生长期明显缩短。在磷限制条件下,中肋骨条藻细胞增殖受到明显抑制,生物量偏低,而东海原甲藻受到的影响较小。磷可能是东海原甲藻及中肋骨条藻生长的限制因子。氮磷比会影响浮游生物的生长,较高的氮磷比可能对东海原甲藻的生长有利,较低氮磷比则可能有利于中肋骨条藻生长。东海原甲藻能在营养盐浓度较低的生长环境中占有优势,相反,营养盐浓度较高的环境更适合中肋骨条藻的生长,中肋骨条藻具有更强的竞争能力。  相似文献   

4.
采用单养和混养方法研究不同氮磷比培养条件下(1∶1、10∶1、25∶1、50∶1、75∶1、100∶1、150∶1)对米氏凯伦藻(Karenia mikimotoi)和中肋骨条藻(Skeletonema costatum)生长和种间竞争参数的影响。结果表明:单养时,米氏凯伦藻和中肋骨条藻的最适氮磷比都为50∶1(N:150μmol/L、P:3μmol/L),米氏凯伦藻和中肋骨条藻分别在氮磷比值为25~75、25~150之间能保持较好的生长。混合培养条件下,两种微藻的环境负载能力(K)、生长率(r)都低于单独培养。中肋骨条藻在各个氮磷比条件下的竞争中完全处于优势,中肋骨条藻对米氏凯伦藻的抑制参数β均高于米氏凯伦藻对中肋骨条藻的抑制参数α,并且β:α随着氮磷比的升高而升高。  相似文献   

5.
在实验室条件下,研究了氮磷比、温度、光照强度等环境因子对中肋骨条藻细胞碳水化合物,氨基酸、蛋白质含量的影响。结果表明:当介质N/P为10:1时生化组成含量比30:1高;在28℃时,其生化含量高;高光照强度下藻生化组成含量比低光照大。  相似文献   

6.
中肋骨条藻是一种在中国东部沿海广泛存在的广温广盐性的浮游硅藻,根据对近年来我国长江口和其他海域所发生赤潮的观测,有相当一部分是以中肋骨条藻为主(王金辉,2002;刘玉等,2002),其严重的破坏了海洋生态环境并造成了重大的国民经济损失,因此,对诱发中骨条藻爆发赤潮各种因子的研究便具有了重要的现实意义。本文应用营养盐加富的实验方法,在室内进行了中肋骨条藻的培养试验,研究了不同磷酸盐浓度条件下中肋骨条藻的生长情况,并对藻细胞内氮磷比的变化情况进行了探讨,以求对揭示中肋骨条藻赤潮的产生机制有所裨益。  相似文献   

7.
磷酸盐对中肋骨条藻生长的影响   总被引:1,自引:0,他引:1  
中肋骨条藻是一种在中国东部沿海广泛存在的广温广盐性的浮游硅藻,根据对近年来我国长江口和其他海域所发生赤潮的观测,有相当一部分是以中肋骨条藻为主(王金辉,2002;刘玉等,2002),其严重的破坏了海洋生态环境并造成了重大的国民经济损失,因此,对诱发中骨条藻爆发赤潮各种因子的研究便具有了重要的现实意义。本文应用营养盐加富的实验方法,在室内进行了中肋骨条藻的培养试验,研究了不同磷酸盐浓度条件下中肋骨条藻的生长情况,并对藻细胞内氮磷比的变化情况进行了探讨,以求对揭示中肋骨条藻赤潮的产生机制有所裨益。  相似文献   

8.
在f/2全营养培养条件下,采用共培养以及滤液交叉培养的方法研究了中肋骨条藻(Skeletonema costatum)和微小亚历山大藻(Alexandrium minutum)之间的竞争作用,结果表明: 微小亚历山大藻指数生长后期的无藻细胞滤液对中肋骨条藻的生长没有抑制作用,但中肋骨条藻滤液明显抑制了微小亚历山大藻的生长,且抑制作用随着中肋骨条藻滤液比例的增大而增大,他感作用是影响这两种微藻间竞争的重要方式之一;通过向培养基中添加自他感物质标准品15S-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid (15(S)-HEPE)考察其对中肋骨条藻自身以及微小亚历山大藻生长的影响,发现15(S)-HEPE在中肋骨条藻滤液中并不是能够抑制微小亚历山大藻生长的他感物质,今后应进一步深入分析中肋骨条藻释放的抑制微小亚历山大藻生长的他感物质。  相似文献   

9.
4种海洋单胞藻生化组成的环境因子效应研究   总被引:15,自引:0,他引:15  
在实验室模拟条件下,应用14C示踪法测定4种海洋单胞藻的光合作用速率,研究光、温度和营养盐等环境因子对藻类细胞生化组成的影响.结果表明,三角褐指藻、盐藻、中肋骨条藻和等鞭金藻适宜生长的光强范围为5.8×103~15×103lx.4种单胞藻光合作用速率随光强增加而增大,其中盐藻和等鞭金藻的光响应比较明显.随光强增加,4种单胞藻细胞的碳水化合物含量及其变化量呈增加趋势,而蛋白质含量及其变化量则减少,脂类含量变化很小.三角褐指藻、盐藻、中肋骨条藻和等鞭金藻最适生长温度分别为:14、26、21、26℃左右.在上述4个实验温度时,4种单胞藻光合作用速率最高,细胞内的碳水化合物、蛋白质、脂类含量及其变化量也达到最大值.三角褐指藻、盐藻、中肋骨条藻和等鞭金藻光合作用过程的表观活化能(E)分别为:23.2、38.5、22.4和61.7KJ/mol,温度系数(Q10)分别为:1.74、1.74.1.38和1.69.三角褐指藻和中肋骨条藻在氮磷比(N/P)为16时,盐藻和等鞭金藻在氮磷比为28时,光合作用速率最大.在N/P为16时,4种单胞藻细胞内的碳水化合物、蛋白质、脂类含量和变化量均达到最大值.  相似文献   

10.
脉冲输入营养盐是陆源输入营养盐的一种方式。用室内模拟脉冲营养盐输入的方法,研究了脉冲营养盐输入对于典型赤潮藻中肋骨条藻(Skeletonema costatum)生长的影响。结果发现脉冲输入营养盐对于中肋骨条藻生长有明显的影响,营养盐脉冲输入的频率和中肋骨条藻生长波动的频率相同。每天输入一次营养盐中肋骨条藻出现藻密度峰值的时间要比每5天输入一次营养盐和每10天输入一次营养盐的中肋骨条藻要滞后,而且藻密度峰值也比后两种情况低。对于3种营养盐的吸收速率而言,每10天输入一次营养盐的中肋骨条藻的吸收速率最大,其次是每天输入一次营养盐的中肋骨条藻,最小的是每5天输入一次营养盐的中肋骨条藻;3种营养盐脉冲输入模式下,每5天输入一次营养盐的中肋骨条藻对于N盐和Si盐的营养需求最少。  相似文献   

11.
中肋骨条藻是一种广温、广盐性的浮游硅藻,并且多次在长江口及其他海域形成赤潮,对海洋生态环境造成严重危害,因此引起国内、外赤潮研究者的广泛关注。不少学者对中肋骨条藻种群的生态、生理特点展开研究(刘东艳等,2002;黄文祥等,1989;邹景忠等,1989;李铁,1990,2000)。营养盐是海洋浮游植物所必需的成分,海水中某种营养盐含量过低往往对浮游植物生长形成限制(Myers et al.,1981;Brian,1986;胡明辉等,1989)。海水营养盐含量过高则易形成富营养化,可进一步引发赤潮(周名江,2001)。硝酸盐是海洋浮游植物所必需的营养物质之一,它直接影响着浮游植物的生长、繁殖等生物活动(李铁,2000;Ryther et al.,1971)。研究海水中硝酸盐浓度和N/P对浮游藻类生长的影响将有助于我们了解高营养化与赤潮发生之间的关系。本文对在不同营养结构条件下,中肋骨条藻的生长速率、培养介质中的pH和溶解有机碳(DOC)进行了研究。  相似文献   

12.
INTRODUCTIONThecontentsandtheirvariationofcellularbiochemicalcomponentsinnormallygrowingmarinealgaereflectthedifferenceinecologicalenvironments,reportedbymanyresearchers(MomsandSkea,1978;SmithandMoms,1980;LiandHarrison,1982;SmithandGeider,1985;Yangetal.,1991,1992).Lightintensity,temperatureandnutrientsaremostimPOrtantenvironmentalfactorsintheocean.ThispaperemphasizestheeffectsofenvironmentalfactorsonthecompositionofPhaendactylumtricornutum,Dunaliellaspp.,SkeletonemacostatumandIsOChr…  相似文献   

13.
1 Introduction R ed tide is a global m arine ecological calam ity.In recentyears, there has been an increase in frequen-cy, affected area and extentof injury of red tide out-breaks in the coastalw aters ofour country.A ccordingto China M arine D isaster B ulletin issued by the StateO ceanic A dm inistration of C hina, harm ful red tideshad occurred up to 119 tim es in 2003, w hich w as 40tim es m ore than thatin 2002. O w ing to the w orsenedcultural environm ent and increased nutrient en…  相似文献   

14.
The concentration and partition ratio of various speciations of nutrients in domestic sewage were determined. The transformation and transportation among the speciations, as well as their biological effects during sewage-seawater mixing were simulated in laboratory. The results are compared with field observation and the following findings are: i) The suitable range of ratio DIN/DIP in seawater for growth of phytoplankton in subtropical estuary and harbor is quite wide. It could grow well even in the range of 15-55 in atom ratio, and is independ of the variation in levels of N and P. ii) The transformation rate among the speciations of phosphorus is within the range of 0. 5 to 1. 1 μmol/d . iii) Phytoplankton uptakes P prior to N during its growth. The growth rate for Skeletonema costatum (the major species) and field algae are 0. 34-0. 58/d and 0. 30-0. 31/d, respectively. iv) The red tide species Prorocentrum micans could become the dominant species to a density 107 cells/L after Skeletonema costatum  相似文献   

15.
选择无机胶体粒子Fe(OH) 3 胶体、伊利石胶体及其与金属铁和铜 ,对中肋骨条藻进行了培养实验。结果表明 :在培养介质中加入Fe(OH) 3 胶体后 ,在低添加量时可通过Fe(OH) 3 胶体提供满足微藻的生长所需的铁 ,从而提高其生长速度。但在较高添加量时 (>0 .5mg/L) ,由于胶体物质的吸附特性 ,微藻的生长受到抑制。Fe(OH) 3 对中肋骨条藻的最佳的添加量在 0 .2 5~ 0 .5 0mg/L之间。中肋骨条藻在加入伊利石胶体液时 ,微藻的生长均产生明显的抑制作用。通过伊利石胶体对培养介质中铁离子和铜离子浓度的调节控制作用 ,可直接影响到中肋骨条藻的生长。  相似文献   

16.
沈竑  洪君超 《海洋与湖沼》1994,25(6):591-595
于1990年6月在长江口赤潮多发区定点观测到一次中肋骨条藻赤潮发生的全过程,对中肋骨条藻赤潮发生过程中浮游植物群落结构的变动及细胞形态的变化进行研究。结果表明,(1)中肋骨条藻赤潮发生前,水体中甲藻数量多于硅藻;赤潮发生后,中肋骨条藻增殖,逐渐成为主要优势种,硅藻在数量上超过了甲藻;浮游植物种类丰度指数的大小能较好地反映赤潮发生的各个阶段。(2)赤潮发生过程中,中肋骨条藻细胞增殖率次序为:发展阶段>维持阶段>起始阶段。(3)在赤潮发生的维持阶段后期和消亡阶段,有5%-7.8%的中肋骨条藻形成休眠孢子,一个中肋骨条藻细胞仅形成一个休眠孢子,且同一个中肋骨条藻群体链上的所有细胞形成休眠孢子是同步的。  相似文献   

17.
根据2002年11月在亚大湾大鹏澳进行的连续30d(每日采样一次)观测资料,运用主成分分析和多元回归分析相结合方法,分析大鹏澳非养殖区中各浮游植物优势种之间的关系及影响其生长与演替的主要理化因子.建立秋季浮游植物优势种演替模型,并与春季的大鹏澳现场调查建立的浮游植物优势种演替模型进行比较,分析生境变化(降雨)对浮游植物优势种演替过程的影响。结果表明,春,秋季浮游植物优势种发生不同的演替过程。春季浮游植物对资源的竞争较为激烈,大量降雨引起海水中营养盐浓度升高,促进并维持中肋骨条藻(Skeletonema costatum)高密度生长,待营养盐被大量消耗后,中肋骨条藻数量下降,减轻了对柔弱菱形藻(Nitzschia delicatissima)的生长压力而使其成为优势种;而秋季水温较低,浮游植物细胞数量较春季大为减少,中肋骨条藻和柔弱菱形藻对资源的竞争较为缓和,使外界环境变化成为影响优势种变化的主要原因;降雨期间虽然营养盐增加,但环境变化使浮游植物的生长受到限制,雨后柔弱菱形藻数量不能恢复,水体中高营养盐浓度促使中肋骨条藻出现生长峰值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号