首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The venerid clam Ruditapes philippinarum is the most prominent suspension-feeding bivalve inhabiting muddy intertidal seagrass beds in Arcachon Bay (SW France). It is exploited by fishermen, and Arcachon Bay ranks number one in France in terms of production and total biomass of this species. Previous studies revealed a decrease in the standing stock of R. philippinarum since 2003 and unbalanced length–frequency distributions with a lack of juveniles and of adults > 40 mm. Consequently, the population dynamics of this bivalve were studied at four intertidal sites and one oceanic site in Arcachon Bay. As clam size structure did not allow classical dynamics computations, field monitoring was coupled with field experiments (tagging–recapture) over two years. Monitoring of condition index and gonadal maturation stages highlighted a high variability in spawning number and intensity between sites. Recruitment events in the exploited area varied spatially but with uniformly low values. Von Bertalanffy Growth Function (VBGF) parameters (K, L) were determined using Appeldoorn and ELEFAN methods. In the exploited sites in the inner lagoon, K was relatively high (mean = 0.72 yr? 1) but L was low (mean = 41.1 mm) resulting in a moderate growth performance index (Φ′ = 2.99). Growth parameters were not correlated with immersion time and L was different between sites. Comparison of mortality coefficients (Z) between cage experiments and field monitoring suggested that fishing accounts for 65–75% of total adult mortality. Low recruitment, a low growth rate and a normal mortality rate led to low somatic production (4.1 and 8.7 g Shell-Free Dry Weight (SFDW) m? 2 yr? 1) and an annual P/B ratio from 0.44 to 0.92 yr? 1. Under current conditions, the possibility of a sustainable population in Arcachon Bay will strongly depend on recruitment success and fishing management.  相似文献   

2.
The life-histories and the secondary production of four dominant peracarid crustaceans (the mysids Boreomysis arctica and Parapseudomma calloplura, the amphipod Rhachotropis caeca, and the isopod Ilyarachna longicornis) in bathyal depths of the Bay of Biscay (NE Atlantic; between 383 and 420 m) and the Catalan Sea (Northwestern Mediterranean; between 389 and 1355 m) were established. Both the Atlantic and the Mediterranean populations of the major part of the target-species had two generations/year with mean cohort-production intervals (CPI) ranging from 5.5 mo for Ilyarachna longicornis to 6.3 mo for Parapseudomma calloplura. The Hynes method showed secondary production to vary in the Bay of Biscay between 0.113 mg DW m−2 yr−1 for I. longirostris and 3.069 mg DW m−2 yr−1 for P. calloplura, with P/B ratios between 4.57 (I. longirostris) and 7.93 (Boreomysis arctica). In the Catalan Sea, production varied between 0.286 mg DW m−2 yr−1 for I. longirostris and 1.096 mg DW m−2 yr−1 for P. calloplura, with P/B between 5.72 (I. longirostris) and 6.66 (P. calloplura). Application of two different empiric models to the whole peracarid assemblage gave similar levels of secondary production in both study areas (between 29.26 and 32.14 mgDWm−2 yr−1 in the Bay of Biscay; between 26.23 and 26.54 mg DW m−2 yr−1 in the Catalan Sea). From the analysis of gut contents of 22 species the dominant species in each study area were assigned to two basic trophic levels, detritus feeders and predators. Also, cumulative curves of dominance showed high diversity (low dominance) for peracarid assemblages distributed at mid-bathyal depths (524–693 m) both in the Bay of Biscay off Arcachon and in the Catalan Sea off Barcelona. We also discuss and compare, both within and between areas, how environmental features may explain the observed diversity patterns, the trophic structure, and the production results obtained for the suprabenthos assemblages.  相似文献   

3.
Ocean surface gravity waves play a major role in many engineering and environmental problems, both in the open ocean and in coastal zones. Therefore, it is essential to improve our knowledge on spatial and temporal variability of wave climate. This study aims at investigating this variability in the North-East Atlantic Ocean (25°W–0°W and 30°N–60° N), using a 57-year hindcast (1953–2009) obtained with a spectral wave model forced with reanalysis wind fields. The hindcast analysis reveals firstly strong seasonal fluctuations of wave climate, with winters characterized by large and long-period waves of mean direction spreading from south-west to north-west, and summers characterized by smaller and shorter-period waves originating from norther directions. From northern (55°N) to southern (35°N) latitudes, the significant wave height (Hs) decreases by roughly 40%, the mean wave direction (Mwd) rotates clockwise by about 25% while the peak period (Tp) only grows by 5%. These three parameters also exhibit a strong inter-annual variability, particularly when winter-means (from 1st of December to 1st of April) are considered. Linear trend analysis over the studied period shows spatially variable long-term trends, with a significant increase of Hs (up to 0.02 m yr?1) and a counterclockwise shift of Mwd (up to ?0.1° yr?1) at northern latitude, contrasting with a fairly constant trend for Hs and a clockwise shift of Mwd (up to +0.15° yr?1) at southern latitudes. Long-term trends of Tp are less significant, with still a slight increase in the north-eastern part of the study area (up to +0.01 s yr?1). Eventually, a comparison between the inter-annual variability of the winter-means of the three selected wave parameters and the North Atlantic Oscillation (NAO) reveals: (1) a strong positive correlation between Hs and the NAO index at northern latitudes (correlation coefficient up to R = 0.91) and a significant negative correlation at southern latitudes (up to R = ?0.6); (2) no significant correlation for Mwd north of 40°N and a clear positive correlation southward of 40°N (up to R = 0.8) and (3) a northward increasing correlation for Tp (up to R = 0.8). Long-term trends for Hs, Mwd and Tp are finally explained by a significant increase in the NAO index over the studied period.  相似文献   

4.
Fish farming impact on the seasonal biomass, carbon and nutrient (nitrogen and phosphorus) balance of the endemic Mediterranean seagrass Posidonia oceanica was assessed in the Aegean Sea (Greece) in order to detect changes in magnitude and fate of seagrass production and nutrient incorporation with organic loading of the meadows. Phosphorus concentration in the leaves, rhizomes and roots was enhanced under the cages throughout the study. Standing biomass was diminished by 64% and carbon, nitrogen and phosphorus standing stock by 64%, 61% and 48%, respectively, under the cages in relation to those at the control. Seagrass production decreased by 68% and element (C, N, P) incorporation by 67%, 58% and 58%, respectively, under the cages. Leaf shedding was reduced by 81% and loss of elements (C, N, and P) through shedding by 82%, 74% and 72%, respectively, under the cages. Leaf and element (C, N, P) residual loss rate, accounting for grazing and mechanical breakage of leaves, was decreased by 79%, 85%, 100% and 96%, respectively, at the control station. At the control station, 13.98 g C m?2 yr?1, 1.91 g N m?2 yr?1 and 0.05 g P m?2 yr?1 were produced in excess of export and loss. In contrast, under the cages 12.69 g C m?2 yr?1, 0.31 g N m?2 yr?1 and 0.04 g P m?2 yr?1 were released from the meadow. Organic loading due to fish farm discharges transformed the seagrass meadow under the cages from a typical sink to a source of organic carbon and nutrients.  相似文献   

5.
The marine subtidal volutid snail Adelomelon beckii was studied in order to obtain their population dynamics, particularly on growth, age, mortality and production. Stable oxygen isotope ratios confirmed semiannual formation of internal growth marks. A von Bertalanffy growth model fitted 308 size-at-age data pairs. A. beckii potential lifespan in Mar del Plata (Argentina) region is 29 years, being rather long lived compared to other large gastropods. Total mortality Z and natural mortality M were calculated to be 0.210 y?1 and 0.081 y?1 respectively. Fishing mortality F amounts to 0.129 y?1 corresponding to an exploitation rate E of 0.614, a value much beyond the optimum rate of 0.427. The current exploitation regime will be unsustainable in the long run unless a proper management approach establishes.  相似文献   

6.
Data from the first systematic survey of inorganic carbon parameters on a global scale, the GEOSECS program, are compared with those collected during WOCE/JGOFS to study the changes in carbon and other geochemical properties, and anthropogenic CO2 increase in the Atlantic Ocean from the 1970s to the early 1990s. This first data-based estimate of CO2 increase over this period was accomplished by adjusting the GEOSECS data set to be consistent with recent high-quality carbon data. Multiple Linear Regression (MLR) and extended Multiple Linear Regression (eMLR) analyses to these carbon data are applied by regressing DIC with potential temperature, salinity, AOU, silica, and PO4 in three latitudinal regions for the western and eastern basins in the Atlantic Ocean. The results from MLR (and eMLR provided in parentheses) indicate that the mean anthropogenic CO2 uptake rate in the western basin is 0.70 (0.53) mol m?2 yr?1 for the region north of 15°N; 0.53 (0.36) mol m?2 yr?1 for the equatorial region between 15°N and 15°S; and 0.83 (0.35) mol m?2 yr?1 in the South Atlantic south of 15°S. For the eastern basin an estimate of 0.57 (0.45) mol m?2 yr?1 is obtained for the equatorial region, and 0.28 (0.34) mol m?2 yr?1 for the South Atlantic south of 15°S. The results of using eMLR are systematically lower than those from MLR method in the western basin. The anthropogenic CO2 increase is also estimated in the upper thermocline from salinity normalized DIC after correction for AOU along the isopycnal surfaces. For these depths the results are consistent with the CO2 uptake rates derived from both MLR and eMLR methods.  相似文献   

7.
North Atlantic sediment drifts are valuable archives for paleoceanographic reconstructions spanning various timescales. However, the short-term dynamics of such systems are poorly known, and this impinges on our ability to quantitatively reconstruct past change. Here we describe a high-resolution 319-day time-series of hydrodynamics and near-bottom (4 m) particulate matter flux variability at a 2600 m deep site with an extremely high sediment accumulation rate on the southern Gardar Drift in the North Atlantic. We compare our findings with the actual deposits at the site. The total annual particle flux amounted to ~360 g m?2 yr?1, varied from ~0.15 to >5.0 g m?2 day?1 and displayed strong seasonal compositional changes, with the highest proportion of fresh biogenic matter arriving after the spring bloom in June and July. Flux variability also depended on the changing input of lithogenic matter that had been (re)suspended for a longer time (decades). Active focussing of material from both sources is required to account for the composition and the magnitude of the total flux, which exceed observations elsewhere by an order of magnitude. The enhanced focussing or increased delivery appeared to be positively related to current velocity. The intercepted annual particle flux accounted for only 60% of the sediment accumulation rate of 600±20 g m?2 yr?1 (0.20±0.07 cm yr?1), indicating higher intra- and inter-annual variability of both the biogenic and lithogenic fluxes and/or advection of additional sediment closer to the seafloor (i.e. <4 m). This temporal variability in the composition and amount of material deposited highlights intra-annual changes in the flux of lithogenic material, but also underscores the importance of (reworked) sediment focussing and seasonality of the biogenic flux. All should be taken into account in the interpretation of the paleorecord from such depositional settings.  相似文献   

8.
The present paper synthesizes data obtained during a multidisciplinary cruise carried out in June 2004 at the continental margin of the northern Bay of Biscay. The data-set allows to describe the different stages of a coccolithophore bloom dominated by Emiliania huxleyi. The cruise was carried out after the main spring phytoplankton bloom that started in mid-April and peaked in mid-May. Consequently, low phosphate (PO4 < 0.2 μM) and silicate (DSi < 2.0 μM) concentrations, low partial pressure of carbon dioxide (pCO2) and high calcite saturation degree in surface waters combined with thermal stratification, probably favoured the blooming of coccolithophores. During the period of the year our cruise was carried out, internal tides induce enhanced vertical mixing at the continental shelf break leading to the injection of inorganic nutrients to surface waters that probably trigger the bloom. The bloom developed as the water-column stratified and as the water mass was advected over the continental shelf, following the general residual circulation in the area. The most developed phase of the bloom was sampled in a remote sensed high reflectance (HR) patch over the continental shelf that was characterized by low chlorophyll-a (Chl-a) concentration in surface waters (<1.0 μg L?1), high particulate inorganic carbon (PIC) concentration (~8 μmol L?1) and coccolithophore abundance up to 57 × 106 cells L?1. Transparent exopolymer particles (TEP) concentrations ranged between 15 and 75 μg C L?1 and carbon content of TEP represented up to 26% of the particulate organic carbon (POC; maximum concentration of 15.5 μmol L?1 in the upper 40 m). Integrated primary production (PP) ranged between 210 and 680 mg C m?2 d?1 and integrated calcification (CAL) ranged between 14 and 140 mg C m?2 d?1, within the range of PP and CAL values previously reported during coccolithophore blooms in open and shelf waters of the North Atlantic Ocean. Bacterial protein production (BPP) measurements in surface waters (0.3–0.7 μg C L?1 h?1) were much higher than those reported during early phases of coccolithophore blooms in natural conditions, but similar to those during peak and declining coocolithophorid blooms reported in mesocosms. Total alkalinity anomalies with respect to conservative mixing (ΔTA) down to ?49 μmol kg?1 are consistent with the occurrence of biogenic precipitation of calcite, while pCO2 remained 15–107 μatm lower than atmospheric equilibrium (372 μatm). The correlation between ΔTA and pCO2 suggested that pCO2 increased in part due to calcification, but this increase was insufficient to overcome the background under-saturation of CO2. This is related to the biogeochemical history of the water masses due to net carbon fixation by the successive phytoplankton blooms in the area prior to the cruise, hence, the investigated area remained a sink for atmospheric CO2 despite calcification.  相似文献   

9.
Dissolved oxygen (DO) in the ocean is a tracer for most ocean biogeochemical processes including net community production and remineralization of organic matter which in turn constrains the biological carbon pump. Knowledge of oxygen dynamics in the North Atlantic Ocean is mainly derived from observations at the Bermuda Atlantic Time-series Study (BATS) site located in the western subtropical gyre which may skew our view of the biogeochemistry of the subtropical North Atlantic. This study presents and compares a 15 yr record of DO observations from ESTOC (European Station for Time-Series in the Ocean, Canary Islands) in the eastern subtropical North Atlantic with the 20 yr record at BATS. Our estimate for net community production of oxygen was 2.3±0.4 mol O2 m−2 yr−1 and of oxygen consumption was −2.3±0.5 mol O2 m−2 yr−1 at ESTOC, and 4 mol O2 m−2 yr−1 and −4.4±1 mol m−2 yr−1 at BATS, respectively. These values were determined by analyzing the time-series using the Discrete Wavelet Transform (DWT) method. These flux values agree with similar estimates from in-situ observational studies but are higher than those from modeling studies. The difference in net oxygen production rates supports previous observations of a lower carbon export in the eastern compared to the western subtropical Atlantic. The inter-annual analysis showed clear annual cycles at BATS whereas longer cycles of nearly 4 years were apparent at ESTOC. The DWT analysis showed trends in DO anomalies dominated by long-term perturbations at a basin scale for the consumption zones at both sites, whereas yearly cycles dominated the production zone at BATS. The long-term perturbations found are likely associated with ventilation of the main thermocline, affecting the consumption and production zones at ESTOC.  相似文献   

10.
We examined the bioaccumulation and trophic transfer of mercury in two marine finfish species, striped bass (Morone saxatilis) and tautog (Tautoga onitis), collected from the Narragansett Bay (Rhode Island, USA). For each of these target fish, white muscle tissue was analyzed for total mercury (Hg) and results were evaluated relative to fish age, body size, and Hg content of preferred prey. Dietary and stable isotope analysis was also used to elucidate the effect of trophic processes on Hg concentrations in fish. The Hg content of muscle tissue was positively correlated with fish age and length for both species, although striped bass accumulated Hg faster than tautog. Accelerated Hg bioaccumulation in striped bass is consistent with its high trophic level (trophic level = 4.07) and Hg-enriched prey (forage fish and macrocrustaceans; mean Hg content = 0.03 mg Hg kg wet wt?1). In contrast, tautog maintain a lower trophic status (trophic level = 3.51) and consume prey with lower Hg levels (mussels and crabs; mean Hg content = 0.02 mg Hg kg wet wt?1). Despite differences in Hg bioaccumulation between target fish, the mean Hg concentration of tautog exceeded levels in striped bass (0.24 and 0.16 mg Hg kg wet wt?1, respectively) due to a disparity in age-at-catch between sampled groups (mean age of tautog and bass = 11.3 and 4.3 yr, respectively). Taking into account legal minimum catch lengths further revealed that 75.0% of legal-size striped bass (>70.2 cm TL; n = 4) and 44.8% of tautog (>40.6 cm TL; n = 29) had Hg levels beyond the US EPA regulatory threshold of 0.3 mg Hg kg wet wt?1. Moreover, Hg-length relationships suggest that each target fish meets this threshold near their minimum legal catch length. Our findings reiterate the value of species ecology to improve predictions of fish Hg and permit better management of human contamination by this important dietary source.  相似文献   

11.
The fluxes of total mass, organic carbon (OC), biogenic opal, calcite (CaCO3) and long-chain C37 alkenones (ΣAlk37) were measured at three water depths (275, 455 and 930 m) in the Cariaco Basin (Venezuela) over three separate annual upwelling cycles (1996–1999) as part of the CARIACO sediment trap time-series. The strength and timing of both the primary and secondary upwelling events in the Cariaco Basin varied significantly during the study period, directly affecting the rates of primary productivity (PP) and the vertical transport of biogenic materials. OC fluxes showed a weak positive correlation (r2=0.3) with PP rates throughout the 3 years of the study. The fluxes of opal, CaCO3 and ΣAlk37 were strongly correlated (0.6<r2<0.8) with those of OC. The major exception was the lower than expected ΣAlk37 fluxes measured during periods of strong upwelling. All sediment trap fluxes were significantly attenuated with depth, consistent with marked losses during vertical transport. Annually, strong upwelling conditions, such as those observed during 1996–1997, led to elevated opal fluxes (e.g., 35 g m−2 yr−1 at 275 m) and diminished ΣAlk37 fluxes (e.g., 5 mg m−2 yr−1 at 275 m). The opposite trends were evident during the year of weakest upwelling (1998–1999), indicating that diatom and haptophyte productivity in the Cariaco Basin are inversely correlated depending on upwelling conditions.The analyses of the Cariaco Basin sediments collected via a gravity core showed that the rates of OC and opal burial (10–12 g m−2 yr−1) over the past 5500 years were generally similar to the average annual water column fluxes measured in the deeper traps (10–14 g m−2 yr−1) over the 1996–1999 study period. CaCO3 burial fluxes (30–40 g m−2 yr−1), on the other hand, were considerably higher than the fluxes measured in the deep traps (∼10 g m−2 yr−1) but comparable to those obtained from the shallowest trap (i.e. 38 g m−2 yr−1 at 275 m). In contrast, the burial rates of ΣAlk37 (0.4–1 mg m−2 yr−1) in Cariaco sediments were significantly lower than the water column fluxes measured at all depths (4–6 mg m−2 yr−1), indicating the large attenuation in the flux of these compounds at the sediment–water interface. The major trend throughout the core was the general decrease in all biogenic fluxes with depth, most likely due to post-depositional in situ degradation. The major exception was the relatively low opal fluxes (∼5 g m−2 yr−1) and elevated ΣAlk37 fluxes (∼2 mg m−2 yr−1) measured in the sedimentary interval corresponding to 1600–2000 yr BP. Such compositions are consistent with a period of low diatom and high haptophyte productivity, which based on the trends observed from the sediment traps, is indicative of low upwelling conditions relative to the modern day.  相似文献   

12.
A 1-D coupled physical-biogeochemical model is used to study the seasonal cycles of silicon and nitrogen in two High Nutrient Low Chlorophyll (HNLC) systems, the Antarctic Circumpolar Current (ACC) and the North Pacific Ocean, and a mesotrophic system, the North Atlantic Ocean. The biological model consists of nine compartments (diatoms, nano-flagellates, microzooplankton, mesozooplankton, two types of detritus, nitrate, ammonium and silicic acid) forced by irradiance, temperature, mixing and deep nitrate and silicic acid concentrations. At all sites, nanophytoplankton standing crop variations are low, in spite of variations in primary production, because of a “top–down” control by microzooplankton. Although nanophytoplankton sustain more than 60% of the annual primary production in these areas, their contribution to the export production does not exceed 1% of the total. The differences in the seasonal plankton cycle among these regions come mainly from differences in the dynamics of large phytoplankton (here diatoms). In the ACC, the chlorophyll maximum remains <1.5 mg m−3, as an unfavourable light/mixing regime and a likely trace-metal limitation keep diatoms from blooming. In the northeast Pacific, trace-metal limitation seems to keep diatoms from blooming throughout the year. In both these systems, light or iron limitations induce high Si/N uptake ratios. Incidentally these high Si/N uptake ratios lead to a net excess of silicic acid utilization over nitrate, and to a subsequent silicic acid limitation during the summertime. In the North Atlantic, under favourable light/mixing regime and nutrient-replete conditions at the onset of the growing period, diatoms outburst and sustain a bloom >3.5 mg Chl-a m−3. Thereafter, mesozooplankton grazing pressure and silicic acid limitation induce the collapse of the chlorophyll maximum and the persistence of lower chlorophyll concentrations in summer. Although the ACC and the North Pacific show HNLC features, they support a high biogenic silica production (1.9 and 1.07 mol Si m−2 yr−1) and export flux (0.79 and 0.61 mol Si m−2 yr−1), compared to the North Atlantic (production: 0.23 mol Si m−2 yr−1, export: 0.12 mol Si m−2 yr−1). The differences in Si production and export between the HNLC systems and the mesotrophic North Atlantic come from both higher Si concentrations and Si/N uptake ratios in the HNLC areas compared to the North Atlantic. Also, the low dissolution rate of biogenic silica compared to nitrogen degradation rate, and the inhibition of nitrate uptake by ammonium, reinforce the net excess of silicic acid utilization over nitrate. As a result, the model also illustrates the efficiency of the silica pump for the three sites: about 50% of the biogenic silica synthesized in the euphotic layer is exported out of the first 100 m, while only 4–11% of the particulate organic nitrogen escapes recycling in the surface layer.  相似文献   

13.
We investigated biogenic silica, several biological components, and silicate in pore-water in the abyssal sediment to determine silicon flux of western North Pacific during several cruises. The surficial sediment biogenic silica content was high at high latitudes with the boundary running along the Kuroshio Extension, and maximum values (exceeding 20%) were found in the Oyashio region. In the subtropical region to the south, most stations showed less than 5% biogenic silica content. This distribution pattern reflected primary production and ocean currents in the surface layer very well. Pore-water samples were collected from 4 stations along the east coast of Japan. The highest asymptotic silicic acid concentration (670 μmol L?1) in pore-water was observed at the junction of Kuroshio and Oyashio, followed by samples from the Oyashio region. It is at the southern station that the lowest value (450 μmol L?1) was observed, and the primary production is low under the influence of Kuroshio there. The diffusive flux followed the same geographic trend as the asymptotic silicic acid concentrations did, ranging 77–389 mmol m?2 yr ?1. Multiple sampling of pore-water was conducted throughout the year at one station at high latitude. The average annual biogenic silica rain flux observed using sediment traps was 373 mmol m?2 yr?1; the diffusive flux and burial flux at the sediment–water interface were 305 and 9 mmol m?2 yr?1, respectively. We concluded that most of the settling silica particles dissolved and diffused at the sediment–water interface and approximately 3% only were preserved in this area. In addition, the obvious time lag observed between the peak rain flux and the maximum diffusive flux suggested that primary production in the surface layer has a great influence on the sedimentation environment of abyssal western North Pacific. These transitions of Si flux at the sediment–water interface were considerably greater in northwestern North Pacific than in southwestern North Pacific. In addition, a station in the Philippine Sea indicated high biogenic silica content because of Ethmodiscus ooze, which are scattered randomly on the sea floor in the subtropical region.  相似文献   

14.
Surface concentrations and vertical fluxes of particulate organic carbon (POC) were assessed in the Amundsen Gulf (southeastern Beaufort Sea, Arctic Ocean) over the years 2004 to 2006 by using ocean color remote-sensing imagery and sequential sediment traps moored over the ca. 400 m isobath. Environmental conditions (sea ice, wind) and oceanographic variables (temperature, salinity, fluorescence and currents) were investigated to explain the variability of POC data. Annual downward POC fluxes in 2004, 2005 and 2006 cumulated, respectively, to 3.3, 4.2 and 6.0 g C m?2 yr?1 at ~100 m depth, and to 1.3, 2.2 and 3.3 g C m?2 yr?1 at ~210 m depth. The fraction of settling POC attributable to autochthonous processes occurring at or next to ice break-up was estimated to be 75–84% of the 100 m annual fluxes and to be 61–75% of the 210 m fluxes. Over the three ice-reduced seasons, distinct scenarios between ice conditions, surface POC pools and vertical POC export at 100 m were identified: (1) in 2004, despite a normal ice break-up, a weak primary production was measured and low vertical fluxes were collected as old ice moved across the region; (2) in 2005, a lengthened ice-free period allowed an extended season of surface POC production near-shore, while an intermediate increase of vertical fluxes was recorded offshore; and (3) in 2006, a late ice melt gave rise to a pulsed ice edge bloom and to large vertical fluxes also associated with extra ice-flushed material. Linear regressions of vertical POC fluxes against satellite-derived surface POC concentrations suggested that the pelagic POC retention in the upper 100 m of the Amundsen Gulf ranged from ca. 70% to 90% depending on the timing of ice cover melt. Regardless of the inter-annual variability, the estimated fraction of the surface POC reservoir reaching the 210 m water depth was reduced to ~5%. Therefore, as the Arctic Ocean warms up, our results support the expectation that the increasing extent of the seasonal ice zone will promote the POC pathways that benefit pelagic webs rather than benthic communities.  相似文献   

15.
Diagenetic analysis based on field and petrographic observations, isotope and microthermometric data was used to reconstruct the fluid flow history of the Cretaceous shallow water limestones from the Panormide platform exposed in north-central Sicily. Analysis focused on diagenetic products in cavities and dissolution enlarged fractures of the karstified limestones that occur just below a regional unconformity. The fluid flow history could be broken down into five stages that were linked to the kinematic and burial history of the region. (1) Petrography (zoned cathodoluminescence and speleothem textures) and stable isotopes (6.5 < δ18OV-PDB < ?3.5‰ and 0 < δ13CV-PDB < ?14‰) indicate that the earliest calcite phase was associated with karstification during emergence of the platform. Limestone dissolution at this stage is important with regard to possible reservoir creation in the Panormide palaeogeographic domain. (2) Fine-grained micrite sedimentation, dated as latest Cretaceous by nannopalaeontology and its 87Sr/86Sr isotope ratio (0.7078), marks replacement by marine fluids during subsequent submergence of the karstified platform. (3) The following calcite cement was still precipitated by marine-derived fluids (?7.0 < δ18OV-PDB < ?5.0‰ and ?3.0 < δ13CV-PDB < 0.5‰/Tm = ?2 to ?5 °C), but at increasingly higher temperatures (Th = 60–120 °C). This has been interpreted as precipitation during Oligocene foredeep burial. (4) Hot (Th = 130–180 °C), low saline (Tm < ?2.5 °C) fluids with increasingly higher calculated δ18OSMOW signatures (+6 to +14‰) subsequently invaded the karst system. These fluids most likely migrated during fold and thrust belt development. The low salinity and relatively high δ18OSMOW signatures of the fluids are interpreted to be the result of clay dewatering reactions. The presence of bitumen and associated fluorite with hydrocarbon inclusions at this stage in the paragenesis constrains the timing of oil migration in the region. (5) Finally, high saline fluids with elevated 87Sr/86Sr (0.7095–0.7105) signatures invaded the karst system. This last fluid flow event was possibly coeval with localized dolomitization and calcite cementation along high-angle faults of Pliocene age, as suggested by identical radiogenic signatures of these diagenetic products.  相似文献   

16.
Thermocline ventilation rates for the subtropical North Pacific are determined using a 1-dimensional (meridional) along-isopycnal advective–diffusive model tuned to chlorofluorocarbon (CFC) concentrations measured along 152°W in 1991 during WOCE P16. Mean southward advection rates in the subtropics range from 1.03 to 0.56 cm s-1 between σθ=25.5 and 26.6. Model-derived ventilation times for the subtropical gyre increase from about 10 to 27 years for that isopycnal range. Oxygen utilization rates (OURs) determined using the advective-diffusive model decrease with depth from 6.6 to 3.2 μmol kg-1 yr-1 between σθ=25.5 and 26.6. Extrapolation of the OUR versus depth trend to the base of the euphotic zone with the 1/Z power function of Martin et al. (1987) and integration from 500 to 100 m depth implies a carbon export rate from the overlying euphotic zone of 2.2±0.5 moles C m-2 yr-1 at 30°N, 152°W. Analysis of the WOCE radiocarbon and salinity distributions indicates that zonal and cross-isopycnal transport terms would have to be considered in modeling these tracers in the subtropical North Pacific.  相似文献   

17.
Estimation of the silicon (Si) mass balance in the ocean from direct measurements (Si uptake-dissolution rates …) is plagued by the strong temporal and spatial variability of the surface ocean as well as methodological artifacts. Tracers with different sensitivities toward physical and biological processes would be of great complementary use. Silicon isotopic composition is a promising proxy to improve constraints on the Si-biogeochemical cycle, since it integrates over longer timescales in comparison with direct measurements and since the isotopic balance allows to resolve the processes involved, i.e. uptake, dissolution, mixing. Si-isotopic signatures of seawater Si(OH)4 and biogenic silica (bSiO2) were investigated in late summer 2005 during the KEOPS experiment, focusing on two contrasting biogeochemical areas in the Antarctic Zone: a natural iron-fertilized area above the Kerguelen Plateau (< 500 m water depth) and the High Nutrient Low Chlorophyll area (HNLC) east of the plateau (> 1000 m water depth). For the HNLC area the Si-isotopic constraint identified Upper Circumpolar Deep Water as being the ultimate Si-source. The latter supplies summer mixed layer with 4.0 ± 0.7 mol Si m? 2 yr? 1. This supply must be equivalent to the net annual bSiO2 production and exceeds the seasonal depletion as estimated from a simple mixed layer mass balance (2.5 ± 0.2 mol Si m? 2 yr? 1). This discrepancy reveals that some 1.5 ± 0.7 mol Si m? 2 yr? 1 must be supplied to the mixed layer during the stratification period. For the fertilized plateau bloom area, a low apparent mixed layer isotopic fractionation value (?30Si) probably reflects (1) a significant impact of bSiO2 dissolution, enriching the bSiO2 pool in heavy isotope; and/or (2) a high Si uptake over supply ratio in mixed layer at the beginning of the bloom, following an initial closed system operating mode, which, however, becomes supplied toward the end of the bloom (low Si uptake over supply ratio) with isotopically light Si(OH)4 from below when the surface Si(OH)4 pool is significantly depleted. We estimated a net integrated bSiO2 production of 10.5 ± 1.4 mol Si m? 2 yr? 1 in the AASW above the plateau, which includes a significant contribution of bSiO2 production below the euphotic layer. However, advection which could be significant for this area has not been taken into account in the latter estimation based on a 1D approach of the plateau system. Finally, combining the KEOPS Si-isotopic data with those from previous studies, we refined the average Si-isotopic fractionation factor to ? 1.2 ± 0.2‰ for the Antarctic Circumpolar Current.  相似文献   

18.
The first carbon budget constructed for the Barents Sea to study the fluxes of carbon into, out of, and within the region is presented. The budget is based on modelled volume flows, measured dissolved inorganic carbon (DIC) concentration, and literature values for dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations. The results of the budget show that ~5600±660×106 t C yr?1 is exchanged through the boundaries of the Barents Sea. If a 40% uncertainty in the volume flows is included in the error calculation it resulted in a total uncertainty of ±1600×106 t C yr?1. The largest part of the total budget flux consists of DIC advection (~95% of the inflow and ~97% of the outflow). The other sources and sinks are, in order of importance, advection of organic carbon (DOC+POC; ~3% of both in- and outflow), total uptake of atmospheric CO2 (~1% of the inflow), river and land sources (~0.2% of the inflow), and burial of organic carbon in the sediments (~0.2% of the outflow). The Barents Sea is a net exporter of carbon to the Arctic Ocean; the net DIC export is ~2500±660×106 t C yr?1 of which ~1700±650×106 t C yr?1 (~70%) is in subsurface water masses and thus sequestered from the atmosphere. The net total organic carbon export to the Arctic Ocean is ~80±20×106 t C yr?1. Shelf pumping in the Barents Sea results in an uptake of ~22±11×106 t C yr?1 from the atmosphere which is exported out of the area in the dense modified Atlantic Waters. The main part of this carbon was channelled through export production (~16±10×106 t C yr?1).  相似文献   

19.
The results from a~1 km resolution HYbrid Coordinate Ocean Model (HYCOM), forced by 1/2° Navy Operational Global Atmospheric Prediction System (NOGAPS) atmospheric data, were used in order to study the dynamic response of the Persian Gulf to wintertime shamal forcing. Shamal winds are strong northwesterly winds that occur in the Persian Gulf area behind southeast moving cold fronts. The period from 20 November to 5 December 2004 included a well defined shamal event that lasted 4–5 days. In addition to strong winds (16 m s?1) the winter shamal also brought cold dry air (Ta=20 °C, qa=10 g kg?1) which led to a net heat loss in excess of 1000 W m?2 by increasing the latent heat flux. This resulted in SST cooling of up to 10 °C most notably in the northern and shallower shelf regions. A sensitivity experiment with a constant specific humidity of qa=15 g kg?1 confirmed that about 38% of net heat loss was due to the air–sea humidity differences. The time integral of SST cooling closely followed the air–sea heat loss, indicating an approximate one-dimensional vertical heat balance. It was found that the shamal induced convective vertical mixing provided a direct mechanism for the erosion of stratification and deepening of the mixed layer by 30 m. The strong wind not only strengthened the circulation in the entire Persian Gulf but also established a northwestward flowing Iranian Coastal Current (ICC, 25–30 cm s?1) from the Strait of Hormuz to about 52°E, where it veered offshore. The strongest negative sea level of 25–40 cm was generated in the northernmost portion of the Gulf while the wind setup against the coast of the United Arab Emirates established a positive sea level of 15–30 cm. The transport through the Strait of Hormuz at 56.2°E indicated an enhanced outflow of 0.25 Sv (Sv≡106 m3 s?1) during 24 November followed by an equivalent inflow on the next day.  相似文献   

20.
Euphotic zone plankton production (P) and respiration (R) were determined from the in vitro flux of dissolved oxygen during six latitudinal transects of the Atlantic Ocean, as part of the Atlantic Meridional Transect (AMT) programme. The transects traversed the North and South Atlantic Subtropical Gyres (N gyre, 18–38°N; S gyre, 11–35°S) in April–June and September–November 2003–2005. The route and timing of the cruises enabled the assessment of the seasonal variability of P, R and P/R in the N and S gyres, and the comparison of the previously unsampled N gyre centre with the more frequently sampled eastern edge of the gyre. Mean euphotic zone integrated rates (±SE) were P=63±23 (n=31), R=69±22 (n=30) mmol O2 m−2 d−1 in the N gyre; and P=58±26 (n=30), R=62±24 (n=30) mmol O2 m−2 d−1 in the S gyre. Overall, the N gyre was heterotrophic (R>P) and it was more heterotrophic than the S gyre, but the metabolic balance of both gyres changed with season. Both gyres were net heterotrophic in autumn, and balanced in spring. This seasonal contrast was most pronounced for the S gyre, because it was more autotrophic than the N gyre during spring. This may have arisen from differences in nitrate availability, because spring sampling in the S gyre coincided with periods of deep mixing to the nitracline, more frequently than spring sampling within the N gyre. Our results indicate that the N gyre is less heterotrophic than previous estimates suggested, and that there is an apparent decrease in R from the eastern edge to the centre of the N gyre, possibly indicative of an allochthonous organic carbon source to the east of the gyre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号