首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of fractal geometry to evaluate seagrass scaling behavior and the persistence of seagrass landscape patterns in relation to a disturbance is presented in this paper.Ria Formosa is a dynamic barrier-island system with a migrating inlet that creates a cyclic disturbance in a seagrass landscape. Seagrass patches which develop in the intertidal and shallow subtidal areas of Ria Formosa were digitized from a temporal sequence of aerial photographs, from 1980 to 1998. The methodology used to evaluate seagrass scaling behavior was proposed by Meltzer and Hastings (1992), and relates the frequency distribution of patch size with the existence of patch size-related patterns. The Hurst exponent was calculated to assess the temporal persistence of the seagrass landscape. Univariate regression was used to investigate relations between temporal persistence and disturbance. The existence of patch size-related patterns was identified for all years suggesting shifts in generating processes occurring at different domains of scales in the seagrass landscape. The results enforces the idea that it is important to recognize the existence of diverse processes occurring at different domains of scales and, emphasizes the importance of evaluating issues of temporal and spatial scale while trying to understand changes in seagrass landscapes. The Hurst exponent estimates show that although the migration and relocation of the inlet affected this system the evolutionary trajectory of the seagrass landscape is persistent, i.e., the patch dynamics observed is stable. Furthermore, persistence values were different for differently sized patches, small patches having lower persistence then larger patches.  相似文献   

2.
The Berre lagoon (Provence, France), one of the largest Mediterranean brackish lagoons (155 km2), was occupied, at the turn of the 20th century, by extensive Zostera meadows (Zostera marina and probably Zostera noltii; perhaps over 6000 ha). Subsequently, the lagoon was disturbed by urban and industrial pollution and, from 1966, by the diversion of the Durance River. This resulted in a 10–49-fold and 8–31-fold increase of the freshwater and silt inputs, respectively. By means of digital analysis of aerial photographs for the years 1944, 1992, 1998 and 2004, coupled with ground truth for the last three dates, we mapped the Zostera meadows. The replacement of Z. marina by Z. noltii, the latter species being already dominant in the 1970s, was completed in 1990. In parallel to this substitution, the Zostera beds underwent a dramatic decline. Their depth limit, which was (6–9) m in the early 20th century, withdrew to 3.5, 3, 1 and less than 1 m by 1944, the 1970s, 1992 and 1998, respectively. Since 1998, Zostera must be considered as functionally extinct. The total surface area of Zostera meadows was of the order of 1.5 ha in 2004. In an attempt to alleviate disturbance, the input of freshwater and silt from the Durance River was significantly reduced from the early 1980s and 1990s respectively. Similarly, from the 1970s to the 1990s, urban and domestic pollution was drastically reduced. Despite these steps, Zostera meadows continued to shrink to near extinction. The lagoon has shifted from a system dominated by seagrass beds to a system with bare silt bottoms, which now occupy most of the lagoon. The reasons could be, in addition to continuing nutrient inputs, the resuspension of silt, no longer trapped under the seagrass canopy, during wind episodes, which are frequent in the area, and/or the release of nutrients from the bare silt habitat, which would constitute an indication of a possible hysteresis of the system. However, since 2000, the establishment of the mussel Mytilus galloprovincialis, a drop in turbidity and a slight, inconspicuous progression of Z. noltii could be the harbinger of a reverse shift of the system.  相似文献   

3.
The Mondego estuary is a well-described system located on the North Atlantic Ocean, where cultural eutrophication progressed over the last decades of the 20th century. Consequently, and due to a large productivity of Ulva spp., Zostera noltii meadows were severely reduced with a concomitant decrease in environmental quality. In 1998, experimental mitigation measures were implemented, via changes in hydrology to increase circulation and diversion of nutrient-rich freshwater inflow, to reverse the process in the most affected area of the estuary – its South arm.The objective of this study was to assess the differences in response of primary producer assemblages to the implemented measures to reduce eutrophication.Results show that the mean concentrations of DIN suffered a notorious decrease due to a significant reduction in the ammonium concentration in the water column, while DIP increased significantly. Primary producer assemblages showed different responses to these changes: phytoplankton, measured as concentration of chlorophyll a, did not show any significant changes; green macroalgae, mostly Ulva spp., suffered a large reduction in biomass, whereas Gracilaria gracilis and the macrophyte Zostera noltii biomasses increased greatly. Results show that phytoplankton biomass has remained constant and suggest that the reduction in ammonium could have been responsible for the changes in the green macroalgal biomass. Light was the most likely factor in the response of seagrass whereas red macroalgal reaction seemed to be dependent on both light and ammonium.  相似文献   

4.
The Banc d'Arguin, a non-estuarine area of shallows and intertidal flats off the tropical Saharan coast of Mauritania, is characterised by extensive intertidal and subtidal seagrass beds. We examined the characteristics of intertidal seagrass (Zostera noltii) meadows and bare areas in terms of the presence and abundance of molluscs (gastropods and bivalves). To explain observed differences between molluscan assemblages in seagrass and bare patches, some aspects of the feeding habitat (top-5 mm of the sediment) and of food (organic materials) of molluscs were examined. The novelty of this study is that phytopigments were measured and identified to assess source and level of decay (freshness) of organic material in the sediment and to study their importance as an explanatory variable for the distribution of molluscs. Over an area of 36 km2 of intertidal flats, at 12 sites, paired comparisons were made between seagrass-covered and nearby bare patches. Within seagrass meadows, dry mass of living seagrass was large and amounted to 180 ±10 g AFDM m− 2 (range 75–240). Containing twice the amount of silt per unit dry sediment mass, seagrass sediments were muddier than bare areas; the relative amount of organic material was also larger. The total number of species of bivalves and gastropods amounted to 27, 14 of which were found only in seagrass areas, 4 only in bare and 9 in both types of habitat. Among the three numerically most abundant species, the bivalves Anadara senilis, Dosinia hepatica and Loripes lacteus, the first was numerically most abundant in bare and the other two in seagrass-covered areas. Bare intertidal areas had greater mean total biomass of molluscs (80.5 g AFDM m− 2) than seagrass meadows (30.0 g AFDM m− 2). In both habitats, the bulk of the biomass was made up by A. senilis. Excluding this species, bare mudflats contained on average only 3.1 g AFDM m− 2 and seagrass meadows 6.9 g AFDM m− 2. As compared to previous surveys in 1980–1986, the biomass of A. senilis had increased almost 10-fold and D. hepatica, previously found in very small numbers, had become the most numerous species. However, the total biomass excluding that of A. senilis was similar. Concentrations of phytopigments were similar to those observed at temperate mudflats, indicating that the Banc d'Arguin might not be as oligotrophic as previously thought. Per unit of dry sediment mass, smaller amounts of phytopigments were found in bare than in seagrass areas. Per unit of dry organic material, bare sediments contained most (fresh) phytopigments. This suggests that in seagrass-covered meadows the organic material is more degraded than in bare sediments. Overall, the composition of phytopigments, quite surprisingly, indicated a benthic-diatom-dominated trophic system. Multivariate statistics revealed that patterns of zoobenthic assemblages were correlated with patterns of a combination of four environmental parameters: grain size of the sediment, amount of fresh phytopigments and amounts of leaves and roots of seagrass.  相似文献   

5.
An intertidal Zostera marina landscape in Torbay, Devon, UK, was sampled to investigate the relationship between patch size, diversity and infaunal assemblage composition with the intention of defining a minimum Zostera patch size where the infaunal seagrass assemblage becomes distinct from the bare sand assemblage. All Zostera patches were found to support a higher level of biodiversity than the surrounding bare sand. However, the size of the Zostera patch had no impact on the level of diversity; it was just the presence or absence of seagrass that made a difference. The sediment and seagrass variables were not significantly different across the range of Zostera patch sizes, indicating that the environment characteristics were homogeneous within the Zostera patches at the patch scale. Multivariate analysis revealed that assemblage composition did vary between the patch types, although the opportunistic polychaete Capitella capitata was present in all patch types and was the most abundant species overall. The presence of opportunistic species and the homogeneity of the Zostera patch variables may be due to the location of this intertidal seagrass bed, which is relatively exposed compared to the locations of other seagrass beds along the south coast of Devon, resulting in a more dynamic and disturbed environment. Nevertheless, our results demonstrate that even small patches of seagrass comprising a few plants support a higher abundance and diversity of infaunal invertebrates than bare sand, indicating that Zostera patches have conservation value whatever their size.  相似文献   

6.
Mud snails Hydrobia ulvae occupy different habitats in complex estuarine ecosystems. In order to determine if fatty acid profiles displayed by mud snails can be used to identify the habitat that they occupy within the same estuary, fatty acids of H. ulvae from one mudflat and one seagrass meadow in the Ria de Aveiro (Portugal) were analyzed and compared to those displayed by microphytobenthos (MPB), the green leaves (epiphyte-free) of Zostera noltii, as well as those exhibited by the epiphytic community colonizing this seagrass. MPB and epiphytic diatom-dominated samples displayed characteristic fatty acids, such as 16:1n-7 and 20:5n-3, while 18:2n-6 and 18:3n-3 were the dominant fatty acids in the green leaves of Z. noltii. Significant differences between the fatty acid profiles of H. ulvae specimens sampled in the mudflat and the seagrass meadow could be identified, with those from the mudflat displaying higher levels of fatty acids known to be characteristic of MPB. This result points towards the well known existence of grazing activity on MPB by mud snails. The fatty acid profiles displayed by H. ulvae inhabiting the seagrass meadows show no evidence of direct bioaccumulation of the two most abundant polyunsaturated fatty acids of Z. noltii (18:2n-6 and 18:3n-3) in the mud snails, which probably indicates that either these compounds can be metabolized to produce energy, used as precursors for the synthesis of essential fatty acids, or that the snails do not consume seagrass leaves at all. Moreover, the fatty acid profiles of mud snails inhabiting the seagrass meadows revealed the existence of substantial inputs from microalgae, suggesting that the epiphytic community colonizing the leaves of Z. noltii displays an important role on the diet of these organisms. This assumption is supported by the high levels of 20:5n-3 and 22:6n-3 recorded in mud snails sampled from seagrass meadows. In conclusion, fatty acid analyses of H. ulvae can be successfully used to identify the habitat occupied by these organisms within the same estuary (e.g. mudflats and seagrass meadows) and reveal the existence of contrasting dietary regimes.  相似文献   

7.
This study provided evidence that Zostera noltii presence affects macrofauna community structure independently from median sediment grain-size and that the notion of ecosystem health is rather subjective: in the present case, we recorded “good health” in terms of seagrass development, “no impact” in terms of macrobenthic biotic indices and “negative effect” for a given key-population. The occurrence and development of a Z. noltii seagrass bed was surveyed at Banc d’Arguin, Arcachon Bay (France), to estimate the modification of the macrozoobenthic community and of the dynamics of a key-population for the local ecosystem, – the cockle Cerastoderma edule. Even though median grain-size of the sediment decreased only at the very end of the survey, i.e. when seagrass totally invaded the area, most of the macrofauna community characteristics (such as abundance and biomass) increased as soon as Z. noltii patches appeared. The structure of the macrofauna community also immediately diverged between sand and seagrass habitats, without however modifying the tested biotic indices (BENTIX, BOPA, AMBI). The health of the cockle population (growth, abundance, recruitment) was impacted by seagrass development. Related parasite communities slowly diverged between habitats, with more parasites in the cockles from seagrass areas. However, the number of parasites per cockle was always insufficient to alter cockle fitness.  相似文献   

8.
Seasonal dynamics of Zostera noltii was studied during 1984 in Arcachon Bay, France. In this Bay, Z. noltii colonizes 70 km2, i.e. approximately 50% of the total area, while Z. marina occupies only 4 km2. Densities and length of vegetative and generative shoots and above-ground and below-ground biomasses were monitored in four meadows which differed according to their location in the Bay, tidal level and sediment composition. Three of these meadows were homogeneous, well-established beds whilst the fourth was under colonization and patchy. Shoot densities and maximal below-ground biomass were lower in the inner silty seagrass bed than in the sandy meadows located in the centre of the Bay. Maximal above-ground biomasses were similar in the two population types. In the well-established beds, vegetative shoot densities, above-ground and below-ground biomasses showed a unimodal pattern with minima in winter (4000 to 9000 shoots·m−2, 40 to 80 g DW·m−2, and 40 to 60 g DW·m−2, respectively) and maxima in summer (11000 to 22000 shoots·m−2, 110 to 150 g DW·m−2, and 140 to 200 g DW·m−2, respectively). Reproductive shoots were observed from the beginning of June until the end of September, except in the colonizing bed where they persisted until December. Furthermore, in the latter, maximal reproductive shoot density was higher (2600 shoots·m−2) than in the established beds (650 to 960 shoots·m−2). The total production of Z. noltii in Arcachon Bay was estimated to approximately 35.6·106 kg DW·y−1 (19.4·106 kg DW·y−1 for above-ground parts and 16.2·106 kg DW·y−1 for below-ground parts).  相似文献   

9.
Posidonia oceanica is a slow growing seagrass species that extends via growing rhizomes that grow only centimetres both horizontally and vertically each year. Posidonia oceanica forms topographically complex biogenic reefs of dead rhizome and sediments that are up to 4 m in height that are called “matte”. This study investigates the role of slow horizontal and vertical growth of rhizomes in the formation of topographic complexity in P. oceanica matte using agent-based modelling. The simulated infilling of landscapes by P. oceanica was run over 600 iterations (years) for 10 random starts of 150 agents each. Initial infilling rates were very slow and P. oceanica had limited cover after a century of growth. Growth accelerated after 100 years but plateaued after 400 years such that after 600 years only two-thirds of the landscape was occupied by P. oceanica. The pattern of spread of agents was initially random in direction but after larger patches were formed spread was radial from these patches. The seagrass landscape was initially highly fragmented with many small separate patches made up of a few agents each, with a Landscape Division index close to 1. Between 300 and 600 years Landscape Division declined sharply to 0.42, indicating patches had coalesced into larger more continuous meadows forming a less fragmented landscape. Perimeter to area ratio of seagrass patches declined exponentially from >1 to approximately 0.2 over 600 years of simulation. The matte developed from growth of patches and its greatest height occurred in more continuously occupied cells of the grid. The topography of the reef that occupied two-thirds of the landscape after six centuries of growth could be described as a pattern of channels between reef plateaus elevated 1–2 m above channels. These results demonstrate that development in P. oceanica meadows of three-dimensional structure, in the formation of biogenic reefs, can be explained by, and is an emergent property of, slow horizontal and vertical rhizome growth rates combined with the time it takes for the accumulation of rhizomes in any region of the landscape. As such, the model provides a parsimonious explanation for the development of complex matte topography.  相似文献   

10.
The dynamics of the seagrass Zostera noltii in established and colonizing meadows were assessed in Ria Formosa lagoon, Southern Portugal. Shoot weight, above:belowground biomass ratio, flowering shoot density, meadow production, and biomass–density relationships were investigated. Results indicate that the species population dynamics differ clearly in different development stages of the meadows. The overall mean of flowering shoot density was five times higher in the colonizing (83 flowering shoots m−2) than in the established meadow (16 flowering shoots m−2), revealing a greater contribution of sexual reproduction during the species colonization process. The temporal variation of the biomass–density relationship in the colonizing meadow showed a cyclic seasonal trajectory, a wider range of data, and a simultaneous peak of biomass and density, suggesting no space limitations constraining the internal packing of shoots during the growing season. In the established meadow, density peaked before biomass in agreement to the dominant role of the clonal architecture of seagrasses in the configuration of closed meadows, suggesting the occurrence of self-thinning and/or regulation of ramet formation. Slope of the biomass–density relationships was similar in the established and colonizing meadows, generally suggesting similar nutritional conditions, regardless of their muddy and sandy sediments. Plants of the colonizing meadow invest mainly on the belowground fraction (above:belowground biomass ratio <1), as meadow expansion is mainly controlled by the elongation of horizontal rhizomes. The annual total production (1163 g C m−2 year−1) and the biomass turnover (34.8 year−1) were also higher in this meadow, corroborating the high investment of the species during the meadow expansion. The faster biomass turnover of the colonizing meadow implies a more limited capacity to accumulate biomass, indicating a greater exportation of organic carbon and nutrients to the coastal area. The different biomass turnover rates suggest different trophic and structural roles of Z. noltii communities in established and colonizing meadows.  相似文献   

11.
Seagrass meadow characteristics, including distribution, shape, size and within‐meadow architectural features, may be influenced by various physical factors, including hydrodynamic forces. However, such influences have hardly been assessed for meadows of the ecologically important and endemic Mediterranean seagrass Posidonia oceanica. The distribution of P. oceanica meadows at five sites in the Maltese Islands was mapped to a depth of c. 15 m using a combination of aerial photography and SCUBA diving surveys. Estimates of wind‐generated wave energy and energy attenuated by depth were computed using the hydrodynamic model WEMo (Wave Exposure Model). Metrics for P. oceanica landscape features were calculated using FRAGSTATS for replicate 2500 m2 subsamples taken from the seagrass habitat maps in order to explore the influence of wave dynamics at the landscape scale. Data on within‐meadow architectural attributes were collected from five sites and analysed for relationships with wave energy. The results indicate that landscape and architectural features of P. oceanica meadows located within the 6–11 m depth range are significantly influenced by wave climate. Posidonia oceanica meadows tend to be patchier and have low overall cover, more complex patch shapes and reduced within‐patch architectural complexity along a wave exposure gradient from low to high energy. The findings from the present study provide new insight into the influence of hydrodynamic factors on the natural dynamism of P. oceanica meadow landscape and architecture, which has implications for the conservation and management of the habitat.  相似文献   

12.
There is increasing interest among ecologists about how the type of matrix surrounding a habitat patch influences the organisms living in that patch. This question is virtually unstudied in marine systems. In this paper I show that the mobile faunal assemblage in seagrass patches does depend on the surrounding matrix. Faunal assemblages in patches of Posidonia surrounded by sand are different than in those surrounded by Heterozostera, another seagrass, having more than double the abundance of both amphipods and polychaetes. However, the differences are not simply due to spillover from the matrix habitat, but rather are an emergent property of the patch context that cannot be predicted. Posidonia surrounded by sand actually has an assemblage that is intermediate between Heterozostera and Posidonia surrounded by Heterozostera. Differences in habitat structure do not account for this pattern, as seagrass biomass did not vary, and the same result was found in artificial seagrass. The faunal assemblage did not vary depending on the location within the patch (edge or centre) for Heterozostera, Posidonia or artificial seagrass. Patch size, however, did have an effect for Heterozostera, with smaller patches having 2–3 times as many isopods per sample as large, but less than half the number of some amphipod families. These results suggest that the landscape context is as important in marine systems as it is known to be in terrestrial systems.  相似文献   

13.
Habitat fragmentation in meadows of Posidonia oceanica, the most important and abundant seagrass in the Mediterranean Sea, was investigated at a region-wide spatial scale using a synthetic ecological index, the Patchiness Index (PI). We tested the hypothesis that human impacts are the major factor responsible for habitat fragmentation in P. oceanica meadows contrasting fragmentation of meadows located in “anthropized” areas with that of meadows located in areas with low anthropization and considered as virtually “natural”. We also related fragmentation of meadow with the morphodynamic state of the submerged beach (i.e. distinctive types of beach produced by the topography, the wave climate and the sediment composition) in order to investigate the influence of one natural component on the seagrass meadow seascape. Results demonstrated that fragmentation in the P. oceanica meadows is strongly influenced by the human component, being lower in natural meadows than in anthropized ones, and that it is little influenced by the morphodynamic state of the coast. The use of landscape approaches to discriminate natural disturbance from human impacts that affect seagrass meadows is thus recommended for the proper management of coastal zones.  相似文献   

14.
《Journal of Sea Research》2009,61(4):255-263
The Banc d'Arguin, a non-estuarine area of shallows and intertidal flats off the tropical Saharan coast of Mauritania, is characterised by extensive intertidal and subtidal seagrass beds. We examined the characteristics of intertidal seagrass (Zostera noltii) meadows and bare areas in terms of the presence and abundance of molluscs (gastropods and bivalves). To explain observed differences between molluscan assemblages in seagrass and bare patches, some aspects of the feeding habitat (top-5 mm of the sediment) and of food (organic materials) of molluscs were examined. The novelty of this study is that phytopigments were measured and identified to assess source and level of decay (freshness) of organic material in the sediment and to study their importance as an explanatory variable for the distribution of molluscs. Over an area of 36 km2 of intertidal flats, at 12 sites, paired comparisons were made between seagrass-covered and nearby bare patches. Within seagrass meadows, dry mass of living seagrass was large and amounted to 180 ±10 g AFDM m 2 (range 75–240). Containing twice the amount of silt per unit dry sediment mass, seagrass sediments were muddier than bare areas; the relative amount of organic material was also larger. The total number of species of bivalves and gastropods amounted to 27, 14 of which were found only in seagrass areas, 4 only in bare and 9 in both types of habitat. Among the three numerically most abundant species, the bivalves Anadara senilis, Dosinia hepatica and Loripes lacteus, the first was numerically most abundant in bare and the other two in seagrass-covered areas. Bare intertidal areas had greater mean total biomass of molluscs (80.5 g AFDM m 2) than seagrass meadows (30.0 g AFDM m 2). In both habitats, the bulk of the biomass was made up by A. senilis. Excluding this species, bare mudflats contained on average only 3.1 g AFDM m 2 and seagrass meadows 6.9 g AFDM m 2. As compared to previous surveys in 1980–1986, the biomass of A. senilis had increased almost 10-fold and D. hepatica, previously found in very small numbers, had become the most numerous species. However, the total biomass excluding that of A. senilis was similar. Concentrations of phytopigments were similar to those observed at temperate mudflats, indicating that the Banc d'Arguin might not be as oligotrophic as previously thought. Per unit of dry sediment mass, smaller amounts of phytopigments were found in bare than in seagrass areas. Per unit of dry organic material, bare sediments contained most (fresh) phytopigments. This suggests that in seagrass-covered meadows the organic material is more degraded than in bare sediments. Overall, the composition of phytopigments, quite surprisingly, indicated a benthic-diatom-dominated trophic system. Multivariate statistics revealed that patterns of zoobenthic assemblages were correlated with patterns of a combination of four environmental parameters: grain size of the sediment, amount of fresh phytopigments and amounts of leaves and roots of seagrass.  相似文献   

15.
The lack of top-down control on Tripneustes gratilla, a sea urchin commonly known to graze on seagrass, and the bottom-up control of its feeding preference, led to the overgrazing of seagrass meadows of the species Thalassodendron ciliatum in Changuu Island (Zanzibar Archipelago). The impact of overgrazing on seagrasses was assessed by mapping the presence of grazed versus non-grazed seagrass patches in the study site, while the top-down control on T. gratilla was assessed by measuring the abundance of its fish predators. The feeding preference and distribution of T. gratilla were characterized by calculating the electivity indexes for each seagrass species and measuring sea urchin density, respectively. Approximately half of the patches of T. ciliatum were overgrazed, while predatory fishes of T. gratilla were absent from the site. The Vanderploeg and Scavia's Relativized Electivity Index indicated that T. gratilla had a feeding preference for T. ciliatum, which was also supported by higher urchin densities within T. ciliatum dominated patches. Bottom-up control of grazing activity was observed by quantifying and analyzing morphological, nutritional, and the chemical defense traits of the seagrass in relation to feeding preference and urchin density. Feeding was positively correlated to the seagrass tissue C:P ratio (ρ = 0.9), whereas urchin density showed no correlations. The bottom-up control of the feeding preference and agglomeration of T. gratilla in T. ciliatum meadows, together with the lack of evidence of substantial top-down control and the long recovery time of T. ciliatum led to the overgrazing of this species at this site. Overgrazing, therefore, was shown to be the result of multiple factors ranging from the traits of the seagrass and feeding preference of T. gratilla, to the abundance of predators in this area.  相似文献   

16.
The spatial variability of seagrass meadows in Arcachon Bay, was studied between 1988 and 2008 using a combination of mapping techniques based on aerial photographs for intertidal dwarf-grass (Zostera noltii) beds and acoustic sonar for permanently submerged eelgrass (Zostera marina) populations. The results show a severe decline over the period for both species, as well as an acceleration of the decline since 2005 for Z. noltii. The total surface regression over the studied period is estimated to be 22.8 km2 for Z. noltii and 2.7 km2 for Z. marina, which represent declines of 33 and 74% respectively.  相似文献   

17.
近几十年来,受到人类活动和气候变化的影响,全球海草床呈现退化趋势,海草床的恢复备受关注。其中,海草种子或幼苗移植由于其对供体海草床破坏和影响较小,并能保证海草的遗传多样性而备受重视。移植区的底质类型是决定海草种子或幼苗移植存活率的重要因子,然而,目前关于热带海草种子萌发和幼苗生长对不同底质类型响应的研究很有限。本研究以热带海草海菖蒲(Enhalus acoroides)种子为研究对象,利用室内模拟实验,分别设置细砂和砂砾底质的处理,探讨不同底质类型对海菖蒲种子萌发和幼苗生长的影响。研究发现,细砂组和砂砾组的萌发率和萌发历期的平均值分别96.3%、3.6 d和95.0%、3.4 d,两个处理组之间差异不显著。萌发后的细砂组海菖蒲幼苗的存活率为97.37%,而砂砾组的幼苗存活率仅为81.58%;另外,海菖蒲幼苗的叶片长度、根长度、叶片生长速率和根生长速率在细砂组均显著高于砂砾组。因此,沉积物粒径的差异对海草种子的萌发率和萌发时间没有显著性影响,但沉积物粒径增大会显著降低萌发后海菖蒲幼苗的存活率和生长速率。因此,未来开展海菖蒲种子或幼苗的野外移植,应选取沉积物粒径较小细砂质区域进行移植,可促进海菖蒲种子或幼苗移植的成活率,提高海菖蒲生态修复的成功率。  相似文献   

18.
The abiotic disturbance of urban wastewater discharge and its effects in the population structure, plant morphology, leaf nutrient content, epiphyte load and macroalgae abundance of Zostera noltii meadows were investigated in Ria Formosa coastal lagoon, southern Portugal using both univariate and multivariate analysis. Four sites were assessed, on a seasonal basis, along a gradient from a major Waste Water Treatment Works (WWTW) discharge to a main navigation channel. The wastewater discharge caused an evident environmental disturbance through the nutrient enrichment of the water and sediment, particularly of ammonium. Zostera noltii of the sites closest to the nutrient source showed higher leaf N content, clearly reflecting the nitrogen load. The anthropogenic nutrient enrichment resulted in higher biomass, and higher leaf and internode length, except for the meadow closest to the wastewater discharge (270 m). The high ammonium concentration (158–663 μM) in the water at this site resulted in the decrease of biomass, and both the leaf and internode length, suggesting a toxic effect on Z. noltii. The higher abundance of macroalgae and epiphytes found in the meadow closest to the nutrient source may also affect the species negatively. Shoot density was higher at the nutrient-undisturbed site. Two of the three abiotic processes revealed by Principal Component Analysis were clearly related to the WWTW discharge, a contrast between water column salinity and nutrient concentration and a sediment contrast between both porewater nutrients and temperature and redox potential. A multiple regression analysis showed that these abiotic processes had a significant effect on the biomass-density dynamics of meadows and on the overall size of Z. noltii plants, respectively. Results show that the wastewater discharge is an important source of environmental disturbance and nutrients availability in Ria Formosa lagoon affecting the population structure, morphology and N content of Z. noltii. This impact is spatially restricted to areas up to 600 m distant from the WWTW discharge, probably due to the high water renewal of the lagoon.  相似文献   

19.
日本鳗草(Zostera japonica)原是中国沿海潮间带较为常见的海草种类,近些年来随着生境的破坏其分布面积急遽下降,较大面积连续分布的海草床已经非常少见。2015年5月和8月,在山东黄河河口区发现了超过1000 ha几乎连续分布的日本鳗草海草床,与互花米草生境相邻,形成独特的生态景观。对日本鳗草生物量和种群补充等基本生物学指标也进行了调查。该发现极大丰富了中国海草数据库,并为日本鳗草的深入研究及保护提供了得天独厚的实验基地。  相似文献   

20.
Review of nekton patterns and ecological processes in seagrass landscapes   总被引:1,自引:0,他引:1  
We reviewed seagrass landscape studies on nekton (fish and larger mobile crustaceans) to summarise: (1) patterns of nekton abundance in relation to patch attributes; and (2) models used to explain processes underpinning observed patterns. The response of nekton to landscape attributes is highly variable. Different taxa showed increasing densities with: increasing and decreasing patch size (12 and 11 taxa, respectively), increasing and decreasing proximity within a patch to edge (9, 14), increasing and decreasing distances from nearest seagrass patch (4, 11), and with patches perpendicular and parallel to currents (1, 2). The majority of taxa (213 out of 281, or 82%) showed no relationships. Landscape scale patterns are important for some species but evidence so far does not demonstrate major landscape effects overall. The lack of pattern might reflect the overriding importance of other factors such as within-patch characteristics, water depth or position within an estuary. It might also result from measurements at the wrong scale. The rigour of surveys can be improved by avoiding confounding of patch attributes by other factors, increasing awareness of statistical power, and more considered survey designs for attributes such as edge effects. The predation model is the most frequently invoked and tested model. Other explanatory models are based on disturbance, rates of encounter, food availability, larval supply, migration and reproductive success, but in many cases are not based on observed patterns. The best experimental work has been done on nekton species for which landscape studies have been built on a detailed understanding of the ecology of the species, such as for blue crabs (Callinectes sapidus). As this basic ecological platform is laid for more species, the landscape approach will become increasingly fruitful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号