首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
通过最新的高分辨率再分析海洋数据资料,对于东海黑潮以及琉球群岛以东海域的海流进行了研究。结果表明琉球群岛以东西边界流最大流速出现在600~1200 m深度的地形坡度最大处,大小约为0.2 m/s。由于冲绳岛以南庆良间水道的水交换对于东海黑潮流量有重要的影响,东海黑潮的平均流量从南向北逐渐递增,平均流量为28×106~35×106m3/s;琉球群岛以东的西边界流流量则比东海黑潮小一个量级,平均值小于其变化的方差;由于受庆良间水道海流的影响,冲绳岛东侧的流量要远小于奄美大岛东侧的流量。同一纬度大洋中西传的Rossby波对琉球群岛以东的西边界流有较大影响,因此琉球群岛以东西边界流的流量有大约100 d的显著变化周期。庆良间水道以南的东海黑潮由于主要受台湾以东黑潮流量的控制,也有大约100 d的显著变化周期,庆良间水道以北的东海黑潮则没有该特征。  相似文献   

2.
基于日本气象厅“长风丸”调查船在2002年4~5月航次期间的CTD资料,结合卫星风场资料,采用改进逆方法计算了琉球群岛两侧海域各断面的流速和流量分布,并分析卫星跟踪浮标资料和同期的卫星高度计资料,得出下面一些主要结论:(1)黑潮流速在PN断面上只有一个流核.通过断面PN的净东北向流量约为34.7×106m3/s,此流量包括台湾暖流、东海黑潮和黑潮以东的反气旋涡的流量.(2)黑潮流速在断面TK上有两个流核,通过断面TK净东向的流量为25.6×106m3/s,黑潮通过海峡后流向断面ASUKA.(3)冲绳岛东南海区琉球海流的流量约为8.8×106m3/s,并流向断面AM.(4)奄美大岛以东的北向海流的流量为12.7×106m3/s,并流向断面ASUKA.在断面ASUKA东南部出现一个中尺度反气旋涡,直径约240 km,其流量约为28.5×106m3/s.(5)四国以南黑潮第一层水体基本来源于通过吐噶喇海峡的黑潮,第二、三层水体来自吐噶喇海峡和奄美大岛以东海域的流量大致相当,而第四层的流量则主要来自于奄美大岛以东海域.(6)浮标资料显示,奄美大岛以东的海流部分来自于断面AM以东海区,并通过断面ASUKA.  相似文献   

3.
2002年春季吕宋海峡海流:观测与改进逆模式计算   总被引:10,自引:1,他引:9  
基于2002年春季航次在吕宋海峡海域锚碇测流站(20°49'57"N,120°48'12"E)200,500与800m处锚碇测流以及CTD观测,采用改进逆方法对调查海域进行海流计算.(1)主要观测的结果:1)在200m处,观测期间海流平均速度为(47.4cm/s,346°).在500m处,海流观测期间平均速度为(20.3cm/s,350°).这些都表明黑潮在吕宋海峡锚碇测流站200和500m处向西北方向入侵南海.2)在800m处,海流观测期间平均速度为(1.2cm/s,35°),它的方向为东北向.比较每层实测流结果,表明800m层海流状况与200和500m层流况不同.3)在观测期间,200,500和800m处,日平均流速在4月皆比3月时要强.4)在调查海区西部的中间区域存在一个高密、冷水中心(HDCW),其中心位置位于断面A的水文站3附近.5)在调查海区东南区域存在一个低密、暖水(LDWW)中心,其中心位置位于断面B的水文站8附近.(2)主要计算结果:1)通过断面B的偏北方向与偏南方向的流量分别为32.48×106m3/s(包括反气旋涡的流量)与3.34×106m3/s.因此通过断面B的净北向流量为29.14×106m3/s.2)通过断面A的东向与西向的流量分别为16.71×106m3/s与8.57×106m3/s(包括气旋涡的流量).因此,通过断面A的净东向流量为8.14×106m3/s.3)通过断面M北向的净流量为24.68×106m3/s.4)黑潮通过断面M后分为主流和一个支流,其主流,流量为16.54×106m3/s,流向断面C的东部分.主流通过断面C的东部分后,最后流向台湾以东海域.而其一个分支,净流量为8.14×106m3/s,在一个高密、冷水中心(HDCW)的区域以东作气旋式弯曲,然后向西北方向通过断面C的西部.因此,黑潮在断面C有两个流核.5)比较计算得到的在锚碇测流站M附近流方向与在200与500m处观测流方向为西北向,它们甚为一致.6)在断面B西侧位于550m以深水层南海水可能缓慢地从西北流向东南,通过断面B的南向流量大约为3.34×106m3/s.  相似文献   

4.
137°E经向断面上的副热带逆流   总被引:7,自引:0,他引:7  
根据137°E断面1967~1995年间冬、夏两季的温、盐资料,计算和分析了该断面的地转流和副热带逆流.主要结果如下:(1)副热带逆流在冬季和夏季均存在.冬季,副热带逆流出现1支、2支、3支、4支4种形式,夏季出现2支、3支两种形式,两季均以2支形式占优势.(2)冬季副热带逆流主要出现在22°~23°N、26°~27°N两区间;夏季主要出现在21°~22°N、24°~25°N两区间.(3)副热带逆流的流速呈带状结构,多为单束单核,个别为单束双核形式.流速具有更强,冬弱的特点.(4)副热带逆流的流量年际差异较大,多年平均而言,冬季流量为14.3×106m3/s,夏季的为22.9×106m3/s.(5)冬季,副热带逆流的“源地”与黑潮“源地”同为一体.前者是台湾省以东黑潮东侧海流的一个分支,并沿着暖脊、冷槽边缘而东流.  相似文献   

5.
东海主要水道的流量估算   总被引:20,自引:6,他引:20  
赵保仁  方国洪 《海洋学报》1991,13(2):169-170
本文以1977—1984年KER调查资料讨论了大隅—吐噶喇海峡中黑潮的流速结构和流量变化,得出经过这两个海峡流出东海的地转流量平均为24.5×106m3/s。大隅海峡中的流量仅占其中的1/12。在吐噶喇海峡黑潮主干两侧均有逆流存在。计算表明,多年平均的表层地转流速系统偏低于GEK观测流速,约8—20cm/s。本文还以实测流速资料估算了经台湾海峡北上的流量,冬、夏季分别为1.05×106m3/s和3.16×106m3/s。据朱祖佑[1]资料,从台湾以东流入东海的黑潮流量平均为29.3×106m3/s。依Miita等人[2]的资料经对马海峡流出东海的平均流量为3.6×106m3/s。如此经东海四个主要水道流入流出的流量接近平衡,流入大于流出3.3×106m3/s。本文还讨论了引起这种差异的可能原因。  相似文献   

6.
利用ROMS(Regional Ocean Modeling System)建立了一套覆盖西北太平洋的涡尺度分辨率环流模型,并对吕宋海峡附近的环流进行了模拟研究。结果表明,吕宋海峡120.75°E断面净流量季节变化显著,全年均为西向输运,6月份达到最小,为0.40×106 m3/s,然后逐渐增大,在12月份达到最大,为6.14×106 m3/s,全年平均流量为3.04×106 m3/s。在500 m以浅,秋、冬季都有明显的黑潮流套存在,并伴有黑潮分支入侵南海,而春、夏季黑潮南海分支减弱或消失,黑潮入侵不明显。在500 m以深,冬、春季,吕宋海峡以东有非常明显的南向流存在,流速约10 cm/s,而到了夏、秋季该南向流出现明显的减弱,黑潮与南海的水交换主要通过吕宋海峡以北的吕宋海沟进行。在垂向结构上,120.75°E断面浅层呈多流核结构,并且流核的位置和强弱受黑潮的季节性变化影响显著,深层流的季节变化不大。在年际尺度方面,吕宋海峡年际体积输运量异常与Niño3.4滞后6个月相关系数达到41.6%,吕宋海峡水交换与ENSO现象有较为显著的正相关关系,并存在2~3 a和准8 a周期的年际变化。  相似文献   

7.
1985年9月的吕宋海峡黑潮及其输送   总被引:7,自引:1,他引:7  
吕宋海峡黑潮的主流轴大致在121°E附近,其西边界可达120°E,东边界在123°E之东。由于受吕宋冷涡之影响,在巴林搪海峡西口,黑潮流速达最高值(超过2kn)。在吕宋海峡的南部和北部,黑潮的体积输送分别为43×10~6m~3/s和32×10~6m~3/s。黑潮有一个向西的11—12×10~6m~3/s的净体积输送,它贡献给进入南海的“黑潮南海分支”。黑潮的一个分支在21°N与黑潮主流脱离,通过120°E向西进入南海,流速达1.6kn,体积输送为11—12×10~6m~3/s。吕宋海峡右侧的暖涡较往常靠东北,其影响深度可达1200m以深。  相似文献   

8.
基于日本“长风丸”调查船在2000年5个航次水文资料及同时期QuikSCAT风场资料,采用改进逆方法计算了东海黑潮的流速与流量等,获得了这5个航次期间的主要结果:(1)在东海海区风速1~2月比其他月份时大,风海流也最强.只在7月表层风海流为北向,加强了黑潮流速.(2)表层最低盐度值夏季时最小,1~2月时最大.这再次表明,夏季时长江冲淡水向东北方向扩散,冬季时基本上向南,其他季节在上述两者之间.(3)PN断面流速结构及其变化:黑潮流核在1~2,10和11月时有两个,在4和7月皆只有1个.黑潮主流核在1月位于计算点9,在4,7,10与11月都位于计算点8,即向陆架方向移动.(4)黑潮在TK断面出现多流核结构特性.11月主流核出现在TK断面中部,存在于水深大于1 200 m区域,其余月份主流核皆出现在TK断面北部,存在于深度400m以浅水层.(5)通过PN断面的净东北向流量在11月最大,为28.1×106m3/s,7月时其次,10月时最小,为24.6×106m3/s.通过PN断面的净东北向流量年平均值为26.4×106m3/s.(6)1~2,4,7与10月在PN断面以东都出现暖的、反气旋式涡,10月份时,反气旋式涡最强.只在11月时出现弱的、气旋式涡.黑潮以东反气旋涡加强时,黑潮流量似乎减小(例如10月);相反,当黑潮以东反气旋涡减弱(例如7月)或者代之出现气旋涡时(例如11月),黑潮流量似乎增大.10和11月在PN断面附近流态的比较,揭示了环流变化较大,这进一步表明,黑潮和其附近中尺度涡的相互作用是重要的.(7)通过TK断面的净东向流量,11月最大,7月其次,10与1~2月最小.通过TK断面净东向流量年平均值为21.9×106m3/s.(8)通过A断面的北向流量在1~2与4月较大,分别为3.5×106与3.1×106m3/s,7月最小.通过A断面的年平均北向流量约为2.7×106m3/s,这表明,在2000年1~2与4月通过对马暖流的流量最大,7月时最小.  相似文献   

9.
东海与邻近海域水、热、盐通量的季节变化研究   总被引:1,自引:0,他引:1  
本文基于高分辨率的区域海洋数值模式对东海及邻近海域进行温、盐、流的数值模拟,模拟结果与实测结果拟合较好。结果表明:东海与邻近海域的水交换过程具有显著的季节变化特征。从流量的角度看,台湾海峡、台湾-西表岛之间水道和西表岛-冲绳岛之间水道是外海水流入东海的3个主要水道,而冲绳岛-奄美大岛、吐噶喇海峡、大隅海峡、济州岛东部和黄东海断面是海水流出东海的水道;其年平均体积输运值分别为1.06×106 m3/s、20.49×106 m3/s、3.20×106 m3/s、-0.92×106 m3/s、-20.59×106 m3/s、-0.30×106 m3/s、-2.37×106 m3/s和-0.37×106 m3/s(向内为正)。对比发现,东海与邻近海域之间各水道的体积、热量和盐量输运均具有相似的季节变化趋势,其最大值往往出现在夏季(7月或8月),最小值往往出现在冬季(1月或2月)。从7月到11月整个东海是流量净流出的过程,而从12月到翌年6月是流量净流入的过程,全年流量基本上保持平衡状态。东海终年存在向黄海的净输入,其体积、热量和盐量的年平均输运值分别为0.37×106 m3/s,0.027×1015 W和12.7×106 kg/s。  相似文献   

10.
1995与1996年夏季琉球群岛两侧海流   总被引:4,自引:3,他引:4  
基于1995,1996年夏季日本调查船的观测资料,采用P矢量方法对琉球群岛两侧的海流进行了计算.结果表明:黑潮为琉球群岛以西海域的一支东北向强流,1996年夏季的流速比1995年夏季的强,在深层出现南向逆流.黑潮东、西两侧分别存在一个反气旋式暖涡和一个弱的气旋式冷涡.1995年夏季,琉球群岛以东,从表层至以下层都存在一支沿岸北上的海流,即琉球海流.该海流来自黑潮分支,为本海区的一个主要物理特征.琉球海流以下出现弱的南向流.冲绳岛以东海域,在25°~25°30'N,128°30'~129°10'E附近从表层至700m水深存在一个中尺度的反气旋式暖涡.在温、盐水平分布图上,对应的出现一个较高温、低密水块.1996年夏季,冲绳岛西南海域存在一个中尺度的反气旋式暖涡和一个气旋式冷涡,形成一个偶极子,中间为较强的南向流,该现象为本海区的一个重要物理特征,属首次报道.冲绳岛以东表层主要被南向流控制,琉球海流不明显.200m以深在近岸出现北向流,这表明琉球海流的核心位于次表层.琉球海流的下面出现南向流.计算海区东北部从表层到700m水深出现一个中尺度的反气旋式暖涡,与1995年夏季时比较,其位置向北移动.此外在1996年夏季从近表层到深层,垂直方向和水平方向上的等温线、等盐线波动很大,例如在C断面上冷、暖涡相间出现,且暖  相似文献   

11.
On the basis of hydrographic data obtained during two October cruises of 1995, a modified inverse method is used to compute the Kuroshio east of Taiwan and the currents east of the Ryukyu-gunto.The net northward volume transport(VT) of the Kuroshio through Section TK2-K2 southeast of Taiwan is about 57.8×106 m3/s.There are four current cores of the Kuroshio at Section TK2-K2.Its main core is near the south of Taiwan, and its maximum speed is about 257 cm/s at the surface.After the Kuroshio flows through Section TK2-K2, there are three branches of the Kuroshio.The main branch of the Kuroshio flows northward into Section TKa east of Su''ao.The second branch of the Kuroshio flows northward through Section TKa and then enters the East China Sea through the region between Yonakunijima and Iriomote-shima.The net northward VT of the Kuroshio through Section TK4 is about 21.6×106 m3/s.The eastern branch of the Kuroshio flows northeastward through the region between a stronger cyclonic eddy and a recirculating anticyclonic gyre, and then flows continuously northeastward to the region east of the Ryūkyū-guntō and becomes a part of the origin of the western boundary current east of the Ryūkyū-guntō.Another part of the origin of the western boundary current east of the Ryūkyū-guntō comes from a recirculating anticyclonic gyre.From the above, in the regions east of Taiwan end east of the Ryūkyū-guntō the pattern of circulation during October of 1995 differs from the pattern of circulation during early summer of 1985.There are several eddies of different scales in this computational region.For example, there is a meso-scale stronger cyclonic eddy whose center is located at about 23°N, 124°20''E.  相似文献   

12.
Circulations east of Taiwan and in East China Sea and east of Ryukyu Islands during early summer 1985YuanYaochu;Cho-tengLiu;P...  相似文献   

13.
Wind data from NCEP and hydrographic data obtained from August 28 to September 10, 1994 have been used to compute circulation in the northern South China Sea and near Luzon Strait using three-dimensional diagnostic models with a modified inverse method. The numerical results are as follows: the main Kuroshio is located above 400 m levels near Taiwan’s eastern coast and above 800 m levels away from it. Near Luzon Strait above 400 m levels a branch of the Kuroshio joins with a part of the northward current, which comes from an area west of Luzon’s western coast and intrudes northwestward, then it branchs into western and eastern parts near 20°30′ N. The eastern part flows northward into an area east of Taiwan, while its western part continues to intrude northwestward, flowing through an area southwest of Taiwan. Net westward intruded volume transport through longitude Section AB at 121°00′ E from 19°00′ N to 21° 43′ N is about 3.5 × 106 m3s−1 in a layer above 400 m levels. The anticyclonic eddies W1 and W3 exist above 700 m levels east of Dongsha Islands and below 200 m levels in the eastern part of the region, respectively. The circulation in the middle region is dominated mainly by a basin-scale cyclonic gyre, and consists of three cyclonic eddies. Strong upwelling occurs in the middle region. The joint effect of baroclinity and relief and interaction between wind stress and relief both are important for real forcing of flow across contours of fH −1 in effecting the circulation pattern.  相似文献   

14.
Variability of the Kuroshio in the East China Sea in 1995   总被引:4,自引:0,他引:4  
INTRODUCTIONTherearemanyresearchworksabbottheKUrOShioVTanditSSeaSOnalvacationintheEastChinaho(GUan,1988;Nishizawaetal.,1982;TangandTaShiro,1993;SunandKaneko,1993;Yuanetal.,1990;Yuanetal.,1993;Yuanetal.,1994;Yuanetal.,1995;LiuandYuan,1997a,b).~previou...  相似文献   

15.
The circulation of intermediate and deep waters in the Philippine Sea west of the Izu-Ogasawara-Mariana-Yap Ridge is estimated with use of an inverse model applied to the World Ocean Circulation Experiment (WOCE) Hydrographic Program data set. Above 1500 m depth, the subtropical gyre is dominant, but the circulation is split in small cells below the thermocline, causing multiple zonal inflows of intermediate waters toward the western boundary. The inflows along 20°N and 26°N carry the North Pacific Intermediate Water (NPIW) of 11 × 109 kg s−1 in total, at the density range of 26.5σθ–36.7σ2 (approximately 500–1500 m depths), 8 × 109 kg s−1 of the NPIW circulate within the subtropical gyre, whereas the rest is conveyed to the tropics and the South China Sea. The inflow south of 15°N carries the Tropical Salinity Minimum water of 35 × 109 kg s−1, nearly half of which return to the east through a narrow undercurrent at 15–17°N, and the rest is transported into the lower part of the North Equatorial Countercurrent. Below 1500 m depth, the deep circulation regime is anti-cyclonic. At the density range of 36.7σ2, – 45.845σ4 (approximately 1500–3500 m depths), deep waters of 17 × 109 kg s−1 flow northward, and three quarters of them return to the east at 16–24°N. The remainder flows further north of 24°N, then turns eastward out of the Philippine Sea, together with a small amount of subarctic-origin North Pacific Deep Water (NPDW) which enters the Philippine Sea through the gap between the Izu Ridge and Ogasawara Ridge. The full-depth structure and transportation of the Kuroshio in total and net are also examined. It is suggested that low potential vorticity of the Subtropical Mode Water is useful for distinguishing the net Kuroshio flow from recirculation flows. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
1992年东海黑潮的变异   总被引:10,自引:2,他引:8  
基于1992年4个航次的水文调查资料,运用改进逆方法计算了东海黑潮的流速、流量和热通量.计算结果表明:(1)PN断面黑潮在春季和秋季都有两个流核,冬季和夏季则只有一个流核.主核心皆位于坡折处.Vmax值春季最大,冬季和夏季次之,而秋季最小.黑潮以东及以下都存在逆流.(2)TK断面黑潮在冬季为两核,春、夏季为3核.海峡南端及海峡深处存在西向逆流.(3)通过A断面的对马暖流Vmax值在秋季最大,冬季最小.黄海暖流位于其西侧,相对较弱.(4)通过PN断面净北向流量夏季最大,秋季最小,而冬、春季介于上述二者之间,1992年四季平均值为28.0×106m3/s;TK断面的净东向流量也是在夏季最大;A断面净北向流量则在秋季最大.(5)PN断面4个航次的平均热通量为2.03×1015W.TK断面3个航次的平均热通量为2.00×1015W.(6)在计算海区,冬、春和秋季都是由海洋向大气放热;夏季则从大气吸热.冬季海面上热交换率最大,而夏季热交换率最小.关键词##4东海;;黑潮;;季节变化  相似文献   

17.
基于2000年5~6月在台湾岛以东海域调查获得的多波束全覆盖测深等地质和地球物理资料,对该海域海底地形特征进行了研究,探讨了构造对海底地形的控制作用及其构造地质意义.研究表明,琉球岛弧岛坡区和琉球海沟表现为典型的西太平洋沟-弧-盆体系控制下的构造地形;台湾岛东部岛坡等深线近南北向平行密集排列,地形坡度大,弧陆碰撞造就了该区独特的地形特征;花东盆地海底峡谷发育,其形成主要受基底起伏和走滑断裂的控制;加瓜海脊东西两侧水深和地形特征明显不同,但其基底可能属于花东盆地,加瓜海脊的东侧对应了两个不同性质板块的边界;西菲律宾海盆表现为北西向线状脊-槽相间排列,并遭受北东向转换断层的切割,根据海底地形、转换断层和磁异常条带的方向推测,研究区海底形成于距今60~45Ma的西菲律宾海盆北东-南西向扩张期.  相似文献   

18.
In this study, the inverse method is used to compute the Kuroshio in the East China Sea and southeast of Kyushu and the currents east of the Ryukyu Islands, on the basis of hydrographic data obtained during September-October, 1987 by R/V Chofu Maru. The results show that: (1)A part of the Taiwan Warm Current has a tendency to converge to the shelf break; (2) the Kuroshio flows across the section C3 (PN) with a reduced current width, and the velocity of the Kuroshio at the section C3 increases and its maximum current speed is about 158 cm/s, and its volume transport here is about 26×106m3/s; (3) the Kuroshio has two current cores at the sections C3 (PN) and B2 (at the Tokara Strait); (4) the currents east of the Ryukyu Islands are found to flow northward over the Ryukyu Trench during September-October, 1987. The velocities of the currents are not strong throughout the depths. At the section C2 east of the Ryukyu Islands, the maximum current speed is at the 699 m levei and its magnitude is 25 cm/s, and i  相似文献   

19.
The influences of mesoscale eddies on variations of the Kuroshio path south of Japan have been investigated using time series of the Kuroshio axis location and altimeter-derived sea surface height maps for a period of seven years from 1993 to 1999, when the Kuroshio followed its non-large meander path. It was found that both the cyclonic and anticyclonic eddies may interact with the Kuroshio and trigger short-term meanders of the Kuroshio path, although not all eddies that approached or collided with the Kuroshio formed meanders. An anticyclonic eddy that revolves clockwise in a region south of Shikoku and Cape Shionomisaki with a period of about 5–6 months was found to propagate westward along about 30°N and collide with the Kuroshio in the east of Kyushu or south of Shikoku. This collision sometimes triggers meanders which propagate over the whole region south of Japan. The eddy was advected downstream, generating a meander on the downstream side to the east of Cape Shionomisaki. After the eddy passed Cape Shionomisaki, it detached from the Kuroshio and started to move westward again. Sometimes the eddy merges with other anticyclonic eddies traveling from the east. Coalescence of cyclonic eddies, which are also generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region south of Japan, into the Kuroshio in the east of Kyushu, also triggers meanders which mainly propagate only in a region west of Cape Shionomisaki. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号