首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ECOMAR project was a multidisciplinary process study conducted in the mid-North Atlantic, coincident hydrodynamically with the Sub-Polar Front (SPF; 48–54°N) and topographically with Charlie-Gibbs Fracture Zone of the Mid-Atlantic Ridge, as part of the Census of Marine Life field project MAR-ECO. Midwater trawling was conducted during the 2007 and 2009 ECOMAR expeditions at 14 stations north and south of the SPF, day and night, in four discrete depth intervals from 0 to 1000 m. A total of 56 species of midwater fishes representing 44 genera and 18 families were collected, several of which are new records for the region and/or were not previously sampled during MAR-ECO sampling. An annotated species list with depth-of-capture data is provided. Three species of the genus Cyclothone (Cyclothone braueri, Cyclothone microdon and Cyclothone pallida) and the myctophid Benthosema glaciale combined to contribute ~88% of all specimens collected. This finding differs from results of previous net-based sampling in the same area, likely due to sampling scheme differences (diel sampling, upper 800 m concentration) and gear selectivity (mesh size, trawl speed). Quantitative data from ECOMAR midwater sampling and the previous 2004 G.O. Sars MAR-ECO expedition are compared. Despite differences in gear between the major MAR-ECO expeditions, abundance estimates of some dominant species were remarkably similar. Data showed that the SPF is an asymmetrical, taxon-specific biogeographic boundary for deep-pelagic fishes in the North Atlantic; the SPF is semi-permeable to some species in one direction, while a strong boundary for species in another direction. Deeper-living fish species did not appear as affected by the SPF as a boundary.  相似文献   

2.
Benthopelagic fishes were sampled during three cruises to Seine Seamount, NE Atlantic, using bottom trawls and an epibenthic sledge. A total of 16 fish species were caught on the summit plateau of the seamount at 160–180 m depth, belonging to 15 different families. Four species were common to all types of trawls, whereas the other species were found only in part of the catches. Most fish caught were small species and typical for shelf and seamount communities. The most abundant fish was the snipefish, Macroramphosus spp., which was important also in terms of biomass. The population structure (size classes and length/weight relationships) of the five most abundant species (Macroramphosus spp., Capros aper, Anthias anthias, Callanthias ruber and Centracanthus cirrus) shows that usually two or three size classes, probably representing age groups (year classes), were present, and that growth rates were high. A stomach content analysis of these fishes revealed a predominance of pelagic prey, mainly small copepods. No indications for a seamount effect in terms of enhanced biomass or topographic blockage were found.  相似文献   

3.
Myctophids are among the most abundant fishes in the world׳s ocean and occupy a key position in marine pelagic food webs. Through their significant diel vertical migrations and metabolism they also have the potential to be a significant contributor to carbon export. We investigated the feeding ecology and contribution to organic carbon export by three myctophid species, Benthosema glaciale, Protomyctophum arcticum, and Hygophum hygomii, from a structurally and ecologically unique ecosystem- the Mid-Atlantic Ridge (MAR). Similar to the results of previous studies, the diet of these fishes was primarily copepods and euphausiids, however, gelatinous zooplankton was identified in the diet of B. glaciale for the first time. Ridge section and time of day were significant explanatory variables in the diet of B. glaciale as determined by canonical correspondence analysis, while depth was the only significant explanatory variable in the diet of P. arcticum. Daily consumption by MAR myctophids was less than 1% of dry body weight per day and resulted in the removal of less than 1% of zooplankton biomass daily. Although lower than previous estimates of carbon transport by myctophids and zooplankton in other areas, MAR myctophid active transport by diel vertical migration was equivalent to up to 8% of sinking particulate organic carbon in the North Atlantic. While highly abundant, myctophids do not impart significant predation pressure on MAR zooplankton, and play a modest role in the active transport of carbon from surface waters.  相似文献   

4.
Abstract. The waters surrounding the Pribilof Islands are an important nursery ground for juvenile walleye pollock (Theragra chalcogramma), an important forage fish in the pelagic food web of the productive Bering Sea shelf region. The diet of juvenile pollock was studied in two consecutive years along a transect line crossing from a well‐mixed coastal domain, through a frontal region to stratified water farther offshore. Variability in stomach fullness was high and evidence for increased feeding intensity in the front was weak. Prey diversity and prey size generally increased with increasing fish size, shifting from predominantly small copepods to larger, more evasive prey items such as euphausiids, crab megalopae and fish. The diet of the fish reflected changes in the relative abundance of copepods and euphausiids in the prey fields between years. Juvenile pollock showed increased feeding rates at dusk, and stomach fullness as well as prey condition were generally lowest just before sunrise; however, the proportion of euphausiids increased in the diet of pollock caught at night, suggesting that some food was also ingested during darkness. Juvenile pollock and their euphausiid prey both vertically migrated above the thermocline at night, although each had a different daytime depth.  相似文献   

5.
The diet of slope dwelling macrourid fishes in the eastern North Pacific is poorly known. We collected several hundred stomach samples to investigate the feeding habits of Coryphaenoides acrolepis and Albatrossia pectoralis, the two dominant slope dwelling macrourids off the continental United States. Coryphaenoides acrolepis exhibited a pronounced ontogenetic shift in diet. Specimens <15 cm pre-anal fin length (PAF) consumed primarily polychaetes, amphipods, cumaceans and mysids, while larger individuals consumed increasingly larger, more pelagic prey such as fish, squid, and large crustaceans. Scavenging was also very important to specimens >15 cm with scavenged food constituting approximately 20% of the weight of total prey and occurring in approximately 20% of fish 21–29 cm. Albatrossia pectoralis consumed primarily midwater fish and squid, and we believe that it feeds in the water column. There were significant differences between the diets of A. pectoralis and C. acrolepis suggesting some degree of niche separation between macrourid species on the continental slope of the eastern North Pacific. Both species are at the top of the food web on the upper continental slope and, because of their abundance, may exert significant pressures on their prey populations.  相似文献   

6.
We examined the variation in habitat use and diet of three dominant fish species (Myoxocephalus brandti, Pholidapus dybowskii, and Pholis crassispina) in a seagrass meadow in the Akkeshi-ko estuary in northeastern Japan, where broad and dense Zostera marina beds exist, using a semi-quantitative census of the fishes and analyses of their stomach contents. Differences among the three fish species in the temporal variation in abundance of each age class (mainly 1- and 2-year age classes) indicated that the temporal pattern of utilization of the seagrass meadow were different among them. In the semi-quantitative dietary analysis, two prey categories, i.e., taxonomic group (order and suborder) and functional group, were used to explain the variation in prey composition with size-dependent changes. The six prey functional groups were classified based on the ecological traits of the prey, i.e., trophic level, size, and life type (habitat and behavior). Ontogenetic shifts in prey of the three fish species could be fully explained by a combination of the two prey categories, and not by the use of only one category (taxonomic or functional group). The pattern of ontogenetic shifts in prey differed among the fish species and size (age) classes. These results indicate that segregation of habitat (seagrass meadow) and prey group (taxonomic and functional group) is performed among the three species, which may contribute to their coexistence in this estuary.  相似文献   

7.
To investigate the trophic ecology of two of the dominant families of deep-sea fish (Macrouridae and Moridae) fatty acid and stable isotope analyses were applied to liver and muscle samples of five abundant species from the NE Atlantic. In conjunction with stomach content data these methods made it possible to identify differences in feeding strategies between the five study species as well as variation in feeding in relation to increasing depth and body size. Biomarkers identified strong similarities between Coryphaenoides armatus and Antimora rostrata though differences were found associating C. armatus more with the benthic food web whereas A. rostrata showed stronger links to the pelagic food web. While Lepidion eques was classified as a species linking benthic and benthopelagic food webs, both fatty acid and stable isotope data suggested that Coryphaenoides guentheri fed on an exclusively benthic diet. Coryphaenoides rupestris on the other hand were largely dependent on a copepod-based food web. Ontogenetic changes in feeding were found for both A. rostrata and C. armatus with the indication of a switch from active predation to scavenging occurring with increasing body size. Biomarkers also reflected the seasonal influx from the photic zone though changes were species-specific and probably reflected the variation in prey availability and abundance in response to these inputs. Our findings have thus demonstrated that the combined use of these biomarkers can elucidate trophic specialisations in situations where conventional methods alone previously provided insufficient data.  相似文献   

8.
Major features of four marine ecosystems were analyzed based on a broad range of fisheries-associated datasets and a suite of oceanographic surveys. The ecosystems analyzed included the Gulf of Maine/Georges Bank in the Northwest Atlantic Ocean, the Norwegian/Barents Seas in the Northeast Atlantic Ocean, and the eastern Bering Sea and the Gulf of Alaska in the Northeast Pacific Ocean. We examined survey trends in major fish abundances, total system fish biomass, and zooplankton biomasses. We standardized each time series and examined trends and anomalies over time, using both time series and cross-correlational statistical methods. We compared dynamics of functionally analogous species from each of these four ecosystems. Major commonalities among ecosystems included a relatively stable amount of total fish biomass and the importance of large calanoid copepods, small pelagic fishes and gadids. Some of the changes in these components were synchronous across ecosystems. Major differences between ecosystems included gradients in the magnitude of total fish biomass, commercial fish biomass, and the timing of major detected events. This work demonstrates the value of comparative analysis across a wide range of marine ecosystems, suggestive of very few but none-the-less detectable common features across all northern hemisphere ocean systems.  相似文献   

9.
The ontogenetic, seasonal, bathymetric and regional variations in the feeding spectrum of 922 specimens of southern blue whiting Micromesistius australis and 512 specimens of hoki Macruronus magellanicus were studied on the Falkland Islands’ shelf (Southwest Atlantic) between November 1999 and April 2003. A total of 49 different prey items were found in the stomach contents of the two species, with the hyperiid Themisto gaudichaudii and Euphausiacea being amongst the most important prey. Although the species composition did not change over fish size, the proportions of individual prey items in their diets did, with an increase in T. gaudichaudii and Euphausiacea with increasing fish size in southern blue whiting. The opposite occurred in hoki. Seasonal variations in the diet were found to mirror the seasonal abundance of prey around the Falkland Islands for the two species. Intra-specific differences in the diet of both predators reflected the distribution of prey, which in turn was determined by the water structure in the two regions sampled, leading to very different diets. In the limited time that the two species occupied the same space there was little or no competition resulting in almost total segregation of their trophic niches in space and time.  相似文献   

10.
11.
A total of 219 deep-sea fishes belonging to five families were examined for the parasite fauna and stomach contents. The demersal fish Macrourus berglax, bathypelagic Bathylagus euryops, and mesopelagic Argentina silus, Borostomias antarcticus, Chauliodus sloani, and Lampanyctus macdonaldi were caught at 243–708 m trawling depth in the Greenland and the Irminger Sea in 2002. A total of 21 different parasite species, six Digenea, one Monogenea, two Cestoda, seven Nematoda, one Acanthocephala, and four Crustacea, were found. The parasite diversity in the meso- and bathypelagic environment was less diverse in comparison to the benthal. Macrourus berglax had the highest diversity (20 species), usually carrying 4–10 different parasite species (mean 7.1), whereas Bathylagus euryops harbored up to three and Argentina silus, Borostomias antarcticus, Chauliodus sloani and Lampanyctus macdonaldi each up to two species. Most Digenea, Cestoda, Nematoda, Acanthocephala, and Crustacea are known from a wide host range. Several of the encountered parasites occurred at a very low prevalence (<10%), indicating that the studied deep-sea fishes are most probably not instrumental to complete the parasite life cycles in the area of investigation. It is suggested that the lack of nutrients in the meso- and bathypelagial limits the abundance of potential first intermediate hosts of nematodes and cestodes, resulting in low infestation rates even of widely distributed, non-specific species. In contrast, the higher biomass in the benthic deep-sea environment increases the availability of potential intermediate hosts, such as molluscs for the digeneans, resulting in increased parasite diversity. Because many deep-sea fish have a generalistic feeding behavior, the observed different parasite diversity reflects a different depth range of the fish and not necessarily a specific fish feeding ecology.  相似文献   

12.
From 2002 to 2010, the jumbo squid (Dosidicus gigas) has been regularly encountered in large numbers throughout the California Current System (CCS). This species, usually found in subtropical waters, could affect coastal pelagic ecosystems and fisheries as both predator and prey. Neither the abundance of jumbo squid nor the optimal ocean conditions in which they flourish are well known. To understand better the potential impacts of this species on both commercial fisheries and on food-web structure we collected nearly 900 specimens from waters of the CCS, covering over 20° of latitude, over a range of depths and seasons. We used demographic information (size, sex, and maturity state) and analyzed stomach contents using morphological and molecular methods to best understand the foraging ecology of this species in different habitats of the CCS. Squid were found to consume a broad array of prey. Prey in offshore waters generally reflected the forage base reported in previous studies (mainly mesopelagic fishes and squids), whereas in more coastal waters (shelf, shelf break and slope habitats) squid foraged on a much broader mix that included substantial numbers of coastal pelagic fishes (Pacific herring and northern anchovy, as well as osmerids and salmonids in northern waters) and groundfish (Pacific hake, several species of rockfish and flatfish). We propose a seasonal movement pattern, based on size and maturity distributions along with qualitative patterns of presence or absence, and discuss the relevance of both the movement and distribution of jumbo squid over space and time. We find that jumbo squid are a generalist predator, which feeds primarily on small, pelagic or mesopelagic micronekton but also on larger fishes when they are available. We also conclude that interactions with and potential impacts on ecosystems likely vary over space and time, in response to both seasonal movement patterns and highly variable year-to-year abundance of the squid themselves.  相似文献   

13.
To improve our understanding of the trophic link between micro-zooplankton and copepods in Gyeonggi Bay, Yellow Sea, the diet composition, ingestion rates, and prey selectivity of Acartia hongi, known as the most abundant and widespread copepod species, was estimated by conducting in situ bottle incubation throughout the different seasons. The results showed that A. hongi preferentially grazed on ciliate and heterotrophic dinoflagellate of a size ranging from 20 to 100 μm rather than phytoplankton. Although micro-zooplankton comprised only an average 13.7% of the total carbon available in the natural prey pool, micro-zooplankton accounted for >70% of the total carbon ration ingested by A. hongi throughout the year, except for winter diatom blooming periods when A. hongi obtained about 60% of its carbon ration from phytoplankton. Our results demonstrated that A. hongi modified their diet composition and feeding rates in response to change in composition and size of prey available to them, and that A. hongi preferentially ingested micro-zooplankton over phytoplankton. Feeding activity of A. hongi could therefore affect the species composition and size structure of natural plankton communities in this study area, particularly the micro-zooplankton. Strongly selective feeding and high grazing pressure by A. hongi on micro-zooplankton shows the role of trophic coupling between copepods and the microbial food web in the pelagic ecosystem of Gyeonggi Bay.  相似文献   

14.
The spatial and temporal characteristics of trophic structure of fish communities in the southern Huanghai Sea were examined based on the data sampled from bottom trawl surveys conducted during the autumn of 2000 and the spring of 2001. Hierarchical agglomerative cluster method and bootstrap randomization were used to identify significant trophic groups for each fish assemblage in the southern Huanghai Sea. A total of six major trophic groups were identified within this system, which classified predators based upon location in the water column or prey size ( i. e. , benthic to pelagic predators or fish to small invertebrate prey predators). The similarity level used to identify significant trophic groups in each assemblage ranged from 24% to 34%. Although planktivores were the dominant trophic group in each assemblage (60% - 79% ), there were spatial and temporal variations in the trophic structure, which reflected the differences in the abundance and availability of dominant preys. Simplified food webs were constructed to evaluate the most important trophic relationships between the dominant prey taxa and the fishes in each assemblage within this system. Although there were some differences in the key prey species among different food webs, pelagic prey items (mainly euphausiids and copepods) represent the most important energetic link between primary producers and higher trophic level predators. The trophic level for most fishes was between 3 and d, and the weighted mean trophic level for each assemblage ranged from 3.3 to 3.4. Compared with previous study in the mid-1980s, there was an obvious downward trend in the trophic level for most fish species, which resulted mainly from the fluctuation in key prey species in the Huanghai Sea. The decrease in the importance of Japanese anchovy seems to be offset by other abundant prey species such as Euphausia pacifica and copepods ( mainly Calanus sinicus ) .  相似文献   

15.
The deep-sea fish Malacosteus niger belongs to a family of fishes, the dragonfishes (Order: Stomiiformes, Family: Stomiidae), that are among the top predators of the open ocean mesopelagic zone. Malacosteus typifies the morphological adaptation of this group for the taking of relatively large prey. These adaptations include huge fangs, an enormous gape, and the loss of gill rakers. Despite these adaptations, examination of specimens of this species from different ocean basins shows that zooplanktivory is a common feeding mode of the species, an extreme departure from its trophic lineage. Large calanoid copepods made up 69–83% of prey numbers and 9–47% of prey biomass in specimens from the North Atlantic, the Gulf of Mexico, and throughout the Pacific. As M. niger feeding observations have never been reported, the rationale for this enigmatic feeding ecology must be inferred from other aspects of its ecology. As presently known, M. niger is unique among all vertebrates in the possession of both a long-wave bioluminescence system and a bacteriochlorophyll-derived retinal photosensitizer that allows long-wave visual sensitivity. A two-part theory is presented to explain why M. niger radically diverges from its clade and preys on food it does not appear morphologically suited to eat: (1) the combination of long-wave bioluminescence and vision systems suggests that M. niger may search small volumes for food, and thus may sustain itself energetically by snacking on small parcels of food (copepods) in between rare encounters with large prey, and (2) M. niger may gain the raw material for its long-wave visual sensitivity, and thus its feeding mode, from the consumption of copepods.  相似文献   

16.
Seven meso- and bathy-pelagic fish species from the Mid-Atlantic Ridge (MAR) were firstly studied for fish parasites and feeding ecology. With a total of seven parasite species, the 247 meso- and bathy-pelagic deep-sea fish specimens belonging to the families Melamphaidae (3 spp.), Myctophidae (3 spp.) and Stomiidae (1 sp.) revealed low parasite diversity. The genetically identified nematodes Anisakis simplex (s.s.) and Anisakis pegreffii from the body cavity, liver and muscles of Myctophum punctatum were the most abundant parasites, reaching a prevalence of 91.4% and mean intensity of 3.1 (1–14). Anisakis sp. (unidentified) infected Chauliodus sloani and Poromitra crassiceps. Bothriocephalidean and tetraphyllidean cestode larvae infected Benthosema glaciale, the latter also occurring in C. sloani and Scopelogadus beanii, at low prevalences. Adult parasites at low infection rates included the digenean Lethadena sp. (2.9%), and the two copepod species Sarcotretes scopeli (5.7%) and Tautochondria dolichoura (5.3–11.4%). The myctophid Lampanyctus macdonaldi and the melamphaid Scopelogadus mizolepis mizolepis were free of parasites. Analyses of the stomach contents revealed crustaceans, especially copepods and euphausiids for the myctophids and also amphipods for the melamphaids as predominant prey items. While all stomachs showing distinct content comprising often unidentified ‘tissue’ (possibly gelatinous zooplankton), only C. sloani preyed upon fish. Though this feeding habit would enable transfer of a variety of crustacean-transmitted parasites into the fish, the parasite fauna in the meso- and bathy-pelagic fish was species poor. All observed parasites showed low host specificity, demonstrating no distinct pattern of host–parasite co-evolution. The MAR is no barrier for the parasite distribution in the North Atlantic meso- and bathy-pelagial.  相似文献   

17.
We examined the large-scale distribution of deep-sea harpacticoid copepods at the species level, in order to clarify the underlying processes of copepod dispersal. The study was based on samples collected from 12 regions and a total of 113 stations: 57 stations at depths between 1107 and 5655 m on abyssal plains in the South and North Atlantic, Southern Ocean, southern Indian Ocean, and the Pacific Ocean, and 56 stations above 900 m in the North Atlantic and eastern Mediterranean Sea.We chose the genus Mesocletodes Sars, 1909 as an ideal group to study the large-scale distribution of harpacticoid copepods in the deep oceans. Clear apomorphies and a comparatively large body size of about 1 mm allow rapid recognition of allied species in meiofauna samples. In addition, Mesocletodes represents more than 50% of the family Argestidae Por, 1986, one of the most abundant harpacticoid families in the deep sea.The geographical distributions of 793 adult females of Mesocletodes belonging to 61 species throughout the South and North Atlantic, Southern Ocean, southern Indian Ocean, Pacific Ocean, and eastern Mediterranean Sea indicated that most species are cosmopolitan. Neither the topography of the sea bottom nor long distances seem to prevent species from dispersing. Passive transport by bottom currents after resuspension is likely the propulsive factor for the dispersal of Harpacticoida, while plate tectonics and movement of individuals in the sediment may play relatively minor roles.  相似文献   

18.
Knowledge of trophic interactions between the key components of marine communities is required to understand food-web dynamics and develop ecosystem-based management approaches. In West Africa, where fisheries sustain the livelihoods of a significant part of the human population, this understanding is even more urgent, especially in the face of rapidly expanding fisheries and some stock collapses in the region. We studied the feeding ecology of the Crevalle jack Caranx hippos, West African Spanish mackerel Scomberomorus tritor and Guinean barracuda Sphyraena afra in the Bijagós Archipelago, Guinea-Bissau. These are the most abundant pelagic predatory teleost fishes in the area, but little is known about their ecology despite being species with commercial and recreational value, and they likely also play an important role in various African coastal ecosystems. Our findings show a high degree of dietary overlap among these three predator species, despite some degree of segregation by prey size and type. All three predators depend on Sardinella maderensis as the most important prey, which together with other members of the Clupeidae represented 47–96% of the ingested prey items. There was little difference in the diets of the predators between the dry and rainy seasons. These novel findings suggest a ‘wasp-waist’-structured ecosystem in the Bijagós Archipelago in which S. maderensis is the central small-sized pelagic fish species, and stress the need for an ecosystem-based approach to fisheries management in the region, with precautionary measures taken to avoid the overexploitation of clupeids.  相似文献   

19.
The benthic fish community off Namibia (between the Cunene River and Walvis Bay) in 50–650 m of water was studied during three bottom trawl surveys. The community was investigated on the basis of distribution, abundance and diet of 51 species, constituting 95 per cent of the demersal fish biomass. Dietary studies revealed the existence of three major trophic groups, one containing species that prey on pelagic and nektonic organisms, a second dominated by predators that feed on benthic polychaetes and copepods and a third group containing predators of benthic crabs, demersal shrimps and fish. Well differentiated from these groups are a few species that prey mainly on jellyfish and ophiuroids. Because for most of the species, their trophic level changes with growth, they were divided into size classes which are analysed independently. To describe interactions between the size classes, a similarity index combining diet affinity with spatial coincidence was applied. Cluster analysis showed that, for Merluccius capensis, Raja straeleni, R. clavata and Trachurus trachurus, there is a large difference in both geographic distribution and dietary preference between the size classes. For species such as Hoplostethus atlanticus, Austroglossus microlepis and Coelorinchus flabellispinis, the different size classes seem to share the same ecological niche. Variation in the number of species and the parameters mean abundance and niche width are described to enhance knowledge of the general structure of the community.  相似文献   

20.
Recent research developments on the ecology, dynamics and trophic position of copepods in the Benguela ecosystem are synthesized. Attention is focused on herbivorous species of the southern Benguela and how they cope with the physical and biological variability characteristic of this upwelling region. Copepods constitute on average approximately half of the total zooplankton carbon and. are most abundant during the upwelling season. They are able to maintain large population densities within local coastal upwelling areas by combining ontogenetically based vertical migration behaviour with features of the current system. Some species have developed finely tuned strategies to overcome periods of starvation between upwelling bouts by storing lipid reserves or by entering temporary developmental arrest. In situ measurements of production rates of local species are among the highest recorded for copepods. Despite an apparent excess of food, copepods exert only limited impact on the phytoplankton, removing on average <25 per cent of that available daily. Indirect estimates of carbon flux indicate that 11–25 per cent of copepod daily ration is used for egestion of faecal pellets. Copepods are the preferred prey of a wide variety of invertebrate and vertebrate predators. Large copepods in particular are important in the diet of commercially exploited pelagic fish. Localized areas of low abundance of copepods have been found in association with high densities of anchovy during peak spawning and recruitment periods. Copepods may therefore constitute a central limiting factor for pelagic fish production in the southern Benguela.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号