首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 95 毫秒
1.
越浪式发电装置具有结构稳定、可靠性高等优点。在前人的研究基础上,对越浪式波能发电装置的模型进行了优化设计,通过模型实验研究了该波能发电装置在不同波况、不同干舷高度下对波能的俘获能力以及结构的受力情况。对越浪量的试验结果进行了无量纲分析,分别得出了越浪式模型装置的越浪量关于干舷高度和波高的指数函数拟合曲线,总结了两者对越浪量影响的普遍规律。通过对规则波和不规则波波浪作用下装置受力结果的归纳总结,探讨了波能装置波压力和浮托力变化的一般规律。本研究可为越浪式波能发电装置的研究提供参考依据,为波浪能的利用提供一定的参考价值。  相似文献   

2.
分层斜坡越浪式波能发电装置作为一种重要的波能转换型式,在开发利用波浪能的同时,可与防波堤或护岸工程相结合,将海岸工程的被动消能变为主动吸能,提高综合效益。在实际工程应用中,分层斜坡越浪式发电装置引浪面在波浪荷载作用下的安全性成为首要问题,由于其引浪面与防波堤或护岸的护面对水体磨阻影响不同,因此水体对结构的作用力不同,已有的斜坡式防波堤所受波浪荷载的研究无法用于指导分层斜坡越浪式发电装置引浪面的结构强度设计。通过水工物理模型试验,对分层越浪装置引浪面在不同波况条件下的结构受力进行研究分析,获得越浪装置引浪面上点压力及波浪力的分布规律,为装置的结构设计提供理论指导及设计支持。  相似文献   

3.
刘大方  刘臻  张国梁 《海岸工程》2020,39(4):237-245
基于计算流体力学软件的三维数值模拟技术,分析了碟形越浪式波能发电装置的越浪性能,通过构建基于水气两相VOF(Volume of Fluid)模型的三维数值波浪水槽对该装置进行三维数值模拟研究,数值计算结果与物理试验结果相互对比验证较为吻合,验证了所构建的三维数值波浪水槽的可靠性,通过考察装置的坡度、导流叶片个数、干舷高度对越浪性能的影响确定装置的最优结构参数。结果表明,在装置的斜坡面边缘增加回流板可减少波浪的反射,提高装置的越浪性能。在数值模拟中将装置的斜坡面边缘处安装回流板对碟形越浪式波能发电装置参数进行优化,通过分析回流板的长度对装置越浪性能的影响来探索最优回流板长度。  相似文献   

4.
碟形越浪式波能发电装置是一种新型的波能发电装置,其利用蓄水池将不稳定的入射波能转换为稳定的淹没出流动能,势能转换为动能带动水轮机运转实现发电。该装置具有输出功率平稳、适应各种海况、可靠度好的的特点,对其进行深入研究,对于边远海域的岛屿经济开发、国防及海水淡化等具有十分重要的意义。  相似文献   

5.
李晓亮  俞聿修 《海洋学报》2007,29(6):126-133
通过三维物理模型实验对斜坡堤上斜向和多向不规则波的单波越浪量进行了研究.实验考察了入射方向为0°~45°的斜向波和方向分布宽度为0°~25°的多向波以及混凝土和扭工字块体两种护面形式.在混凝土护面堤上用Weibull分布函数拟合了单波越浪量的累积频率分布,在影响因素不同的条件下确定了分布函数中的系数和越浪比例,给出了计算单波越浪量的公式,同时对扭工字块体护面堤上大约100个波中最大的单波越浪量进行了估算.  相似文献   

6.
不同掩护程度弧形胸墙波压力及越浪量试验研究   总被引:1,自引:0,他引:1  
李玉龙 《海岸工程》2010,29(2):17-22
为了明确斜坡堤弧形胸墙越浪量及波压力的变化规律,采用波浪水槽试验测量了弧形胸墙的越浪量和波压力。试验从斜坡堤弧形胸墙前的掩护程度等因素入手对弧形胸墙的返浪效果及波压力进行初步研究,得出不同掩护程度弧形胸墙的越浪量及波压力,发现掩护程度越好,弧形胸墙所受波压力越小;半掩护情况下越浪量最小,为实际工程设计提供了依据。  相似文献   

7.
根据现有规范公式计算的海塘越浪量存在一定程度的风险,它主要来自越浪量计算参数的不确定性。对影响海塘越浪量计算不确定性的3种主要因素进行了分析,在此基础上给出了用M on te C arlo方法进行海塘越浪量风险模拟的步骤。一个实例海塘的计算结果表明:按《浙江省海塘工程技术规定》(1999)公式计算的海塘越浪量存在很大的不确定性,海塘越浪量分布在0.044~0.069 m3/(s.m),大于最大允许海塘越浪量[0.05 m3/(s.m)]的概率为88.93%。因此,对重要海塘的越浪量进行物理模型试验验证是十分必要的。  相似文献   

8.
斜向和多向不规则波对直立堤平均越浪量研究   总被引:1,自引:0,他引:1  
通过三维波浪模型试验研究了斜向和多向不规则波对直立堤的越浪量。分别按平均越浪量和单波最大越浪量进行研究,探讨了平均越浪量随相对堤高、波浪方向、波浪方向分布宽度、波陡和相对水深等影响因素的变化规律,导得了斜向和多向不规则波作用于直立堤上的平均越浪量的计算公式。  相似文献   

9.
灾害性波浪是中国沿海地区最具破坏性的自然灾害之一。采用开源程序OpenFOAM中interFoam求解器,对低顶海堤(在风暴潮和海平面上升情况下所面临的不利工况)的孤立波越浪特性开展数值模拟研究。通过孤立波冲击海堤的基准算例,验证模型在模拟波浪爬升和越浪过程中大变形波面以及剧烈波浪力方面的精度。基于验证的数值模型,对孤立波在低顶海堤上的越浪特征以及防浪墙高度对越浪的影响开展参数化研究。结果表明堤顶超高减小导致更为剧烈的越浪。针对尚无低顶海堤孤立波越浪量经验公式的问题,提出新的适用于堤顶超高小或为0的孤立波越浪量经验公式。此外,研究发现增加防浪墙高度可有效减少越浪,但防浪墙所受的波浪力也增大。综合考虑防浪墙减少越浪以及自身所受波浪力,针对文中研究采用的海堤截面和波浪条件,建议无量纲防浪墙高度取为1.00。  相似文献   

10.
张娜  邹国良 《海洋工程》2015,33(2):32-41
为合理确定防浪建筑物的越浪量,基于含非静水压力梯度项的非线性浅水方程建立了近岸波浪越浪数值模型。通过采用域内造波、消波并结合波前静压假定的破碎模型,模拟了规则波和不规则波在斜坡上的波浪传播变形,并在此基础上进行了越浪量数值计算。数值计算结果与物理模型实验结果表明,非静压模型可合理地描述波浪破碎点位置、破碎后的波高、增减水以及斜坡上的堤后越浪量。数值模型具有较高的计算精度和计算效率,可为实际工程防浪建筑物越浪以及堤顶高程的设计提供一种新的数值研究手段。  相似文献   

11.
为分析碟形越浪式波能发电装置初步设计方案的合理性和不足,应用三维势流理论和波浪的辐射-衍射理论,结合水动力分析软件AQWA,计算在规则波浪作用下装置浮体6个自由度上运动的响应幅值算子(RAOs),考虑不规则波浪、风、流载荷的共同作用,对装置在工作海况和恶劣海况下的运动响应进行数值模拟分析,得到其时间历程结果。结果表明:装置结构外形设计合理,装置在其锚链张力腿锚泊系统定位下,运动响应满足工作稳定性要求和安全性要求。  相似文献   

12.
带胸墙斜坡堤越波量的试验研究   总被引:1,自引:0,他引:1  
带胸墙斜坡式防波堤堤顶标高的合理确定,有赖于越波量的正确计算。本文基于水力学中流量系数的概念,建立越波量的计算公式。对影响流量系数的几个主要因素:波高、波陡、胸墙高、平台宽度、相对水深和护面结构等,进行了较系统的试验和讨论,提出了确定流量系数的经验公式。另外,还根据越波量的大小及越波波态,将堤分为:不越水堤、少量越水堤、越水堤及半潜堤四类,可作为合理确定堤顶标高时参考。  相似文献   

13.
长江口横沙东滩典型海堤越浪量现场和试验研究   总被引:3,自引:3,他引:0  
越浪量是允许越浪海堤设计的重要参数。在对以往相关研究成果进行回顾和分析基础上,结合长江口横沙东滩促淤圈围五期工程现场波浪和越浪量实测资料,通过对横沙东滩典型断面型式进行整体和断面物理模型试验,研究结构各参数对越浪量的影响,进而提出适合长江口海堤的越浪量计算公式。公式计算结果与试验数据吻合良好,与Van der Meer公式相比具有较好的一致性。  相似文献   

14.
Any kind of Wave Energy Converter (WEC) requires information on how optimize the device in terms of hydraulic performances and structural responses. This paper presents results on wave loading acting on an innovative caisson breakwater for electricity production. The Seawave Slot-Cone Generator (SSG) concept is based on the known principle of overtopping and storing the wave energy in several reservoirs placed one above the other. Using this method practically all waves, regardless of size and speed are captured for energy production. In the present SSG setup three reservoirs have been used. Comprehensive 2D and 3D hydraulic model tests were carried out at the Department of Civil Engineering, Aalborg University (Denmark) in the 3D deep water wave tank. The model scale used was 1:60 of the SSG prototype at the planned location of a pilot plant at the west coast of the Kvitsøy island (Stavanger, Norway).  相似文献   

15.
In this study we investigate how the wave energy deficit in the lee of an array of overtopping type wave energy converting devices (WECs), redistributes with distance from the array due to the natural variability of the wave climate and wave structure interactions. Wave directional spreading has previously been identified as the dominant mechanism that disperses the wave energy deficit, reducing the maximum wave height reduction with increasing distance from the array. In addition to this when waves pass by objects such as an overtopping type WEC device, diffracted waves re-distribute the incident wave energy and create a complex interference pattern. The effect of wave energy redistribution from diffraction on the wave energy shadow in the near and far field is less obvious. In this study, we present an approximate analytical solution that describes the diffracted and transmitted wave field about a single row array of overtopping type WECs, under random wave conditions. This is achieved with multiple superpositions of the analytical solutions for monochromatic unidirectional waves about a semi-infinite breakwater, extended to account for partial reflection and transmission. The solution is used to investigate the sensitivity of the far field wave energy shadow to the array configuration, level of energy extraction, incident wave climate, and diffraction. Our results suggest that diffraction spreads part of the wave energy passing through the array, away from the direct shadow region of the array. This, in part, counteracts the dispersion of the wave energy deficit from directional spreading.  相似文献   

16.
考虑波浪的浅水变化、折射、绕射、反射和破碎等现象的影响,以文氏谱作为输入谱,建立了浅水区域随机波浪传播变形的改进数值模型。对日照帆船港港域波高的数值计算结果表明:在没有越浪的情况下,计算值与物理模型试验观测值吻合。改进的数值模型成为求解港口水域波高的1种有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号