首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
借助"中国首次环球科学考察"航次,在东太平洋表层海水进行了添加氮、磷的现场培养实验。现场记录了实验水体温度的变化,用分光光度法对水体硝酸氮和活性磷酸盐浓度进行了检测,并用荧光法分析了水体叶绿素a浓度。结果表明,氮的添加会引起水体中叶绿素a浓度短期内快速增大,同时伴随硝酸盐浓度的显著降低,而单独添加P对水体中叶绿素a浓度影响并不显著;水体中N/P比值与叶绿素a浓度、N/P比值与浮游植物生长速度、温度与叶绿素a浓度以及温度与浮游植物生长速度之间均缺乏相关性。因此认为,在东太平洋实验海区表层海水中添加氮会引起浮游植物快速爆发,而磷的添加并不能刺激浮游植物快速生长,水体N/P比值和水体温度都不能单独控制浮游植物群落的生长。  相似文献   

2.
北冰洋浮游生物空间分布及其季节变化的模拟   总被引:3,自引:1,他引:2  
低营养级浮游生物生态动力过程对环境变化的响应非常敏感。随着全球气候变化加剧,北冰洋正在经历快速的环境变化。厘清北冰洋低营养级浮游生物季节分布与变化特征是探究北冰洋生态系统对环境快速变化响应的前提,也是评估北极海区固碳能力的重要依据。基于此,本文构建了海洋–海冰–生物地球化学循环模型,并对北冰洋叶绿素浓度以及浮游生物结构的时空变化特征进行了模拟,结果表明:(1)北冰洋表层叶绿素浓度的峰值主要出现在5月,且太平洋一侧叶绿素浓度高于大西洋一侧;随着海水层化,表层受营养盐限制的海区呈现次表层叶绿素浓度最大值现象,且由陆架向海盆,次表层叶绿素浓度最大值层逐渐加深;9月,叶绿素浓度高值重回水体上层,太平洋一侧海区表层叶绿素浓度呈现较为明显的次峰值。(2)由于太平洋和大西洋入流营养盐浓度及结构的不同,北冰洋表层浮游生物群落结构存在明显空间差异。太平洋一侧,硅藻和中型浮游动物占优,硅藻在5月和9月出现生物量峰值,微型浮游植物在3月、5月和6月维持相对较高生物量;而大西洋一侧,在早春-春末夏初-夏秋经历了微型浮游植物-硅藻-微型浮游植物的演替,总体而言,微型浮游植物和微型浮游动物占优。此外,两侧海区浮游动物浓度峰值相较浮游植物滞后约半月。  相似文献   

3.
南海叶绿素a浓度垂直分布的统计估算   总被引:2,自引:0,他引:2  
高姗  王辉  刘桂梅  黄良民 《海洋学报》2010,32(4):168-176
分析整理了1993—2006年近10 a南海北部海域、南沙海域和南海其他海域的叶绿素a浓度历史航次调查资料,基于前人提出的全球叶绿素浓度垂直分布的统计分析模式,根据南海表层叶绿素a浓度大小的不同分级,对南海叶绿素a浓度进行了参数化处理,拟合估算了南海各水层剖面的叶绿素a浓度分布值,并结合不同海区的环境特征,分析了南海叶绿素a浓度垂直分布与其海水物理环境的关系。初步分析结果表明,叶绿素a浓度随深度垂直变化的拟合曲线呈一定倾斜的正态分布特征,当表层叶绿素a浓度较低时,作为南海深水海盆区的代表,拟合值更接近实测平均值的分布,叶绿素a浓度高值集中在次表层剖面上;当表层叶绿素a浓度较高时,作为近岸区和河口区的代表,高值多集中在表层海水,拟合误差偏大。该统计估算模式对于揭示南海叶绿素a浓度垂直分布结构进行了有益的尝试,为发展适合不同海区特点的模式以及校正参数奠定了基础。利用该模式与海洋水色卫星遥感数据有效结合,将对南海叶绿素a浓度时空分布格局的研究具有重要的意义。  相似文献   

4.
根据2005年4-5月(春季)、8月(夏季)和11月(秋季)对大亚湾大鹏澳海区表层的现场调查结合营养盐加富实验,探讨了不同季节硝态氮(NO-3)、脲氮(urea)和无机磷(PO3-4)等营养元素对该海区浮游植物叶绿素a含量与初级生产力及它们的粒级结构的潜在影响.调查海区表层海水叶绿素a含量在近岸养殖区较高,季节变化不明显,但其粒级结构有较大的季节差异;初级生产力的平面分布与叶绿素a含量在春、秋季均较一致,其粒级结构与叶绿素a的粒级结构在春季基本一致,但在秋季有较大差异.实验结果表明, NO-3、urea和PO3-4对该海区浮游植物叶绿素a、初级生产力及它们的粒级结构有不同的潜在影响,并存在季节差异.尽管磷被认为是该海区浮游植物生长的主要限制因子,结果显示氮(NO-3或urea)对浮游植物生长仍有潜在限制作用,其中NO-3和urea作为不同氮源的潜在影响有明显区别.  相似文献   

5.
杭州湾——舟山渔场秋季浮游植物现存量和初级生产力   总被引:17,自引:5,他引:17  
1995年9月在杭州湾和长江口至舟山海区进行了浮游植物细胞丰度、叶绿素a浓度和初级生产力的现场观测研究.结果表明,表层水浮游植物平均细胞丰度为(22.68±63.33)×104个/dm3;平均叶绿素a浓度为2.80±3.46μg/dm3,小于20μm的微型和微微型浮游生物细胞对叶绿素a的贡献占71%;平均初级生产力(C)为692.5±1192.4mg/(m2·d),小于20μm的微型和微微型浮游生物细胞对总生产力的贡献占68%.河口区悬浮物质浓度高,浮游植物光合作用受光的限制,各项生物参数与真光层深度紧密相关.生物锋区位于真光层深度10~20m、盐度26~32的长江冲淡水稀释区.同时探讨了浮游植物细胞活性(R)与光合作用同化数(AN)、叶绿素a与初级生产力、叶绿素a与海面光谱反射率的相互关系,为海洋水色遥感在初级生产力的应用研究提供科学依据  相似文献   

6.
在海冰覆盖的极地海区,浮游植物季节性藻华变化呈现典型的单峰特征。由于藻华过程受控于海冰、光照、混合层深度和营养盐供给等多个因素,其发生时间和强度在地球系统模式模拟结果中存在较大的不确定性。本研究选取11种CMIP6地球系统模式结果,以多种类型的观测资料和产品作为判断参考值,评估各模式结果能否准确模拟北极典型海区(巴伦支海、楚科奇海及白令海)浮游植物藻华动态的变化规律。通过计算能表征光照和营养盐限制的多个指标,分析表层叶绿素a浓度模拟结果的误差来源。结果表明,依据冰下光照时长、混合层变化速率、表层硝酸盐指标将11种模式分为3组,与参考值指标差异较小组别中的模式在藻华模拟方面明显占优,而其余模式在表层硝酸盐或混合层变化的模拟上存在较大误差,导致表层叶绿素a浓度峰值的发生时间延后且峰值浓度误差大。总体而言,地球系统模式配置中除要考虑光照和营养盐这两种基础限制条件外,也需关注由温盐控制的上混合层深度,从而准确模拟出表层叶绿素a浓度的季节性变化规律,上述研究为地球系统模式中相关参数化方案的改进提供了参考。  相似文献   

7.
南黄海浮游植物季节性变化的数值模拟与影响因子分析   总被引:25,自引:1,他引:25  
用三维物理-生物耦合模式研究南黄海浮游植物(以叶绿素a为指标)的季节变化.对于物理模式采用Princeton ocean model(POM),对于生物模式考虑溶解无机营养盐(氮、磷、硅)、浮游植物、食草性浮游动物和碎屑.给定已知的初始场和外加边界强迫,模拟了观测到叶绿素a的主要时、空分布特征,如浮游植物的春、秋季水华和夏季次表层叶绿素a极大值现象等.研究表明,浮游植物春季水华最先发生于黄海中央海域,主要原因是该海域透明度较高,流速较小.春季水华开始于垂直对流减弱和层化开始形成之前(约3月底至4月上旬),显著地依赖水层的稳定性.水体层化以后(约5~9月)叶绿素a浓度高值区分布在南黄海的南部和锋区.夏季的南黄海中央海域,由于上混合层营养盐几乎耗尽,限制了浮游植物的生长,在紧贴温跃层下部的真光层,具有丰富的营养盐和合适的光照,次表层叶绿素a极大值得以形成.秋季(约9~11月份,略迟于海表面开始降温的时间,随地点不同而异)随垂直混合的增强,有利于营养盐向上输运,浮游植物出现一次较小的峰值.  相似文献   

8.
杭州湾——舟山渔场秋季浮游植物现存量和初级生产力   总被引:8,自引:0,他引:8  
1995年 9月在杭州湾和长江口至舟山海区进行了浮游植物细胞丰度、叶绿素a浓度和初级生产力的现场观测研究 .结果表明 ,表层水浮游植物平均细胞丰度为(2 2 6 8± 6 3 33)× 1 0 4个 /dm3;平均叶绿素a浓度为 2 80± 3 46 μg/dm3,小于 2 0μm的微型和微微型浮游生物细胞对叶绿素a的贡献占 71 % ;平均初级生产力 (C)为6 92 5± 1 1 92 4mg/ (m2 ·d) ,小于 2 0 μm的微型和微微型浮游生物细胞对总生产力的贡献占 6 8% .河口区悬浮物质浓度高 ,浮游植物光合作用受光的限制 ,各项生物参数与真光层深度紧密相关 .生物锋区位于真光层深度 1 0~ 2 0m、盐度 2 6~ 32的长江冲淡水稀释区 .同时探讨了浮游植物细胞活性 (R)与光合作用同化数 (AN)、叶绿素a与初级生产力、叶绿素a与海面光谱反射率的相互关系 ,为海洋水色遥感在初级生产力的应用研究提供科学依据  相似文献   

9.
黑潮源区及其邻近海域叶绿素a浓度的季节分布   总被引:6,自引:0,他引:6  
2001年冬季、2002年春季和秋季在琉球群岛、台湾岛和吕宋岛以东的西北太平洋黑潮源区及其邻近海域观测叶绿素a浓度季节分布及其粒级结构。结果表明,冬季表层平均叶绿素a浓度高于春季和秋季,台湾岛及以北岛链东南部的北部测区叶绿素a浓度高于巴士海峡及吕宋岛以东的南部海区。叶绿素a垂直分布呈真光层内随垂直深度增加而浓度增大,真光层下至水深200m随垂直深度增加而浓度降低的分布趋势。春季和秋季叶绿素a浓度粒级结构表明,微微型光合浮游生物(Pico级份)对总叶绿素a的贡献占优势,微型(Nano级份)次之,小型(Micro级份)所占比例最小。表层水光合浮游植物细胞丰度在(1.3~13.5)×103cells/dm3,以小粒径的硅藻占优势。呈现出微微型光合浮游生物在观测海区的重要性。  相似文献   

10.
于2013年3月和8月研究了长江口及其邻近海域叶绿素a的分布特征,并对环境因子和长江冲淡水对浮游植物生物量分布的影响进行了探讨。结果表明,叶绿素a浓度在丰水期较高,平均值为5.18μg/L,最高值达32.05μg/L,现场海水出现变色现象;与同期历史资料对比分析,发现该海域叶绿素a浓度呈现出波动增长趋势。丰水期与枯水期叶绿素a的相对高值区均位于冲淡水的中部,122.5°E~123°E之间;丰水期在调查海域出现溶解氧低值区与低氧区,最低值仅为0.64 mg/L;发现低氧区出现位置北移、面积扩大和溶解氧最低值下降的趋势。底层溶解氧低值区分布与表层叶绿素高值区大致吻合,表明低氧现象与表层浮游植物的生长和现存量密切相关,在跃层存在的水体中表层浮游植物的大量繁殖易造成底层低氧区的出现。  相似文献   

11.
Two autonomous profiling “Bio-Argo” floats were deployed in the northwestern and eastern sub-basins of the Mediterranean Sea in 2008. They recorded at high vertical (1 m) and temporal (5 day) resolution, the vertical distribution and seasonal variation of colored dissolved organic matter (CDOM), as well as of chlorophyll-a concentration and hydrological variables. The CDOM standing stock presented a clear seasonal dynamics with the progressive summer formation and winter destruction of subsurface CDOM maxima (YSM, for Yellow Substance Maximum). It was argued that subsurface CDOM is a by-product of phytoplankton, based on two main characteristics, (1) the YSM was located at the same depth than the deep chlorophyll maximum (DCM) and (2) the CDOM increased in summer parallels the decline in chlorophyll-a. These observations suggested an indirect but tight coupling between subsurface CDOM and phytoplankton via microbial activity or planktonic foodweb interactions. Moreover, the surface CDOM variations observed both by floats and MODIS displayed different seasonal dynamics from what recorded at subsurface one. This implies that CDOM standing stock can be hardly detected by satellite. It is worthnoting that surface CDOM was found to be more related to the sea surface temperature (SST) than chlorophyll-a concentration, suggesting its physical origin, in contrast to the biological origin of YSM and subsurface standing stocks.  相似文献   

12.
The variation of dissolved organic matter (DOM) and fluorescence characteristics during the phytoplankton bloom were investigated in Yashima Bay, at the eastern part of the Seto Inland Sea, Japan. We found significant accumulations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), chromophoric dissolved organic matter (CDOM) fluorescence, and UV260 during the phytoplankton bloom period in 2005, although lower accumulations of DOC and DON and only increases of CDOM fluorescence were observed during the bloom period in 2006. Little or no correlation between DOM and phytoplankton abundance might be due to the composition of DOM, which is a complex mixture of organic materials. The 3D-EEM results revealed that the DOM produced around the phytoplankton bloom period contained tyrosine, tryptophan, and humic-like substances. Our results showed that the occurrence of phytoplankton bloom contributed to the production of DOM in coastal water but the DOM accumulation depended on the type of phytoplankton bloom, the phytoplankton species in particular. From our results, we concluded that phytoplankton have a great role in the dynamics of DOM as a producer in a coastal environment.  相似文献   

13.
The cycle of the phytoplankton in a coastal water is controlled by the biological processes, solar radiation, water temperature and physical transport processes. A three-dimensional ecosystem dynamic model is adopted in this study to investigate the influence of different physical factors on the variation of phytoplankton and nutrients in the Bohai Sea. The simulation is carried out for the year 1982. The simulated annual cycle of the primary production and nutrients are in reasonable agreement with the observations in the pattern. Vertical mixing can both affect the vertical transportation of nutrients and horizontal distribution of primary production. In winter the vertical distribution of nutrients is homogeneous because of the intensive mixing, while in summer there is a high value of nutrients in the depth about 15 m due to the stratification. The high primary production plague and the weak mixing center is positional correspondence. The production of phytoplankton is sensitive to the photosynthetically active radiation, which is strongly influenced by the transparency. The increase of the transparency can promote the production in spring and autumn significantly, but has little effect on the production in summer. The change of the transparency can both affect the occurrence time and the amplitude of the phytoplankton bloom dramatically. Horizontal advection does not affect the variation trend of the annual cycle of chlorophyll-a, but does affect the relative magnitude of the phytoplankton bloom, especially in summer. Horizontal advection can dramatically alter the horizontal distribution of chlorophyll-a. The maximum concentration of chlorophyll-a without horizontal advection in summer is twice as high than that with advection and the high chlorophyll-a areas locate along the coast. The river discharge only has regional influence on the ecosystem. The Huanghe River with high nitrate concentration influ-ences the annual cycle of nitrogen of the Laizhou Bay significantly.  相似文献   

14.
On the basis of the data obtained from the comprehensive Kuroshio surveys in 1987-1988,this paper analyses the oceanographic characteristics in the area (125°-130° E,27°-31° N) of the continental shelf edge of the East China Sea (E. C. S. ) and its adjacent waters and discusses the effects of the Kuroshio front,thermocline and upwelling of the Kuroshio subsurface water on the distribution of standing stock of phytoplankton (chlorophyll-a). The distribution of high content of chlorophylly-a has been detected at 20-50 in depth in the water body on the left side of the Kuroshio front in the continental shelf edge waters of the E. C. S. The high content of chlorophyll-a spreads from the shelf area to the Kuroshio area in the form of a tongue and connects with the maximum layer of subsurface chlorophyll-a of the Kuroshio and pelagic sea. The author considers that the formation of the distribution of high content chlorophyll-a in this area results from the bottom topography and oceanic environment and the  相似文献   

15.
A vertical one-dimensional ecosystem model was constructed and applied to Station Papa. The model has seven compartments (phytoplankton, nitrate, ammonium, zooplankton, particulate organic matters, dissolved organic matters, dissolved oxygen) and was coupled with a mixed layer model for calculating diffusion coefficient which appears in the governing equations. The mixed layer model was driven by SST, SSS data observed at Station Papa in 1980 and ECMWF wind data for 1980, and the ecosystem model was driven by fixing nitrate concentration in deep layer to an observational value. The phytoplankton maximum in March was reproduced by the model although the maximum in fall-winter could not be reproduced. The model also suggests the importance of studying nitrification. As a whole, the model could reproduce characteristic features at Station Papa such as the summer ammonium maximum at 50 m depth, the summer dissolved oxygen maximum at 70 m depth and the absence of remarkable phytoplankton bloom.  相似文献   

16.
Regional and vertical distribution of the microzooplankton in the Philippine and the Celebes Seas is reported in relation to the phytoplankton distribution. The maximum concentration of chlorophylla occurred at the surface in the Celebes Sea and in subsurface layer (50–150 m depth) in the Philippine Sea. On the other hand, the maximum occurrence of the microzooplankton was observed in the subsurface layer (50–150 m) throughout these sea areas; discrepancy in the vertical positions of the chlorophylla and microzooplankton maxima was observed in the former sea area. The higher dominancy of large-sized phytoplankton such as diatoms andTrichodesmium at the surface maximum, probably because most large-sized phytoplankton were uningestible for the microzooplankton, was the main reason why the discrepancy existed in the Celebes Sea. In the Philippine Sea, where the subsurface chlorophylla maximum layer was formed mainly by small-sized phytoplankton such as coccolithophorids and small dinoflagellates, such a discrepancy was not observed. These may indicate the establishment of a close food relationship between the microzooplankton and the small-sized phytoplankton rather than to the large-sized phytoplankton.  相似文献   

17.
Effects of vertical stability on spring blooms of phytoplankton were investigated for the western subarctic Pacific ocean using a one-dimensional (depth) ecosystem model. In the model, vertical stability was expressed by diffusion constants calculated from observed density distribution. Dynamics of phytoplankton in blooms was calculated by the model using the vertical diffusion. Then, the calculated results were compared with the Coastal Zone Color Scanner (CZCS) data. The comparison shows that the shallow surface mixed layer causes early start days of spring blooms at inshore (northern) stations. In addition, spring blooms continue long at inshore (northern) stations since a water column has weak stability. This is because weak stability of a water column causes large nutrient supply from a deep layer and large diffusive transport of phytoplankton biomass from the subsurface maximum.  相似文献   

18.
We analyze a two-year time-series of chromophoric dissolved organic matter (CDOM) light absorption measurements in the upper 400 m of the water column at the BOUSSOLE site in the NW Mediterranean Sea. The seasonal dynamics of the CDOM light absorption coefficients at 440 nm (acdom(440)) is essentially characterized by (i) subsurface maxima forming in spring and progressively reinforcing throughout summer, (ii) impoverishment in the surface layer throughout summer and (iii) vertical homogeneity in winter. Seasonal variations of the spectral dependence of CDOM absorption, as described by the exponential slope value (Scdom), are characterized by highest values in summer and autumn at the surface and low values at the depths of acdom(440) subsurface maxima or just below them. Variations of acdom(440) are likely controlled by microbial digestion of phytoplankton cells, which leads to CDOM production, and by photochemical destruction (photobleaching), which leads to CDOM degradation. Photobleaching is also the main driver of Scdom variations. Consistently with previous observations, acdom(440) for a given chlorophyll a concentration is higher than expected from Case I waters bio-optical models. The total non-water light absorption budget shows that surface waters at the BOUSSOLE site are largely dominated by CDOM during all seasons but the algal bloom in March and April. These results improve the knowledge of CDOM absorption dynamics in the Mediterranean Sea, which is scarcely documented. In addition, they open the way to improved algorithms for the retrieval of CDOM absorption from field or satellite radiometric measurements.  相似文献   

19.
An algal bloom is defined as a relatively rapid increase in the biomass of phytoplankton in an aquatic system. During 30 March to 24 April 2007, a cruise was conducted in the central Southern Huanghai Sea to investigate the spring bloom processes. The spatial and temporal variations of phytoplankton are discussed based on the in-situ observations and simultaneous remote sensing data. The explosive algal blooming varied quickly in temporal and spatial scales, due to the highly patchy distribution. Data obtained at the 2 anchor stations (BM1 and BM2) were analyzed in the present study. Horizontal advection is speculated to be responsible for the abrupt decrease in the concentration of chlorophyll-a at stations BM1 and BM2. At station BM2, the intermediate high chlorophyll-a concentration, coinciding with the low temperature, was found to be advected from the inshore colder water mass located to the east of the site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号