首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study concerns the determination of a regional geoid model in the North Atlantic area surrounding the Azores islands by combining multi-mission altimetry from the ERS (European Remote Sensing) satellites and surface gravity data. A high resolution mean sea surface, named AZOMSS99, has been derived using altimeter data from ERS-1 and ERS-2 35-day cycles, spanning a period of about four years, and from ERS-1 geodetic mission. Special attention has been paid to data processing of points around the islands due to land contamination on some of the geophysical corrections. A gravimetric geoid has been computed from all available surface gravity, including land and sea observations acquired during an observation campaign that took place in the Azores in October 1997 in the scope of a European and a Portuguese project. Free air gravity anomalies were derived by altimetric inversion of the mean sea surface heights. These were used to fill the large gaps in the surface gravity and combined solutions were computed using both types of data. The gravimetric and combined solutions have been compared with the mean sea surface and GPS (Global Positioning System)-levelling derived geoid undulations in five islands. It is shown that the inclusion of altimeter data improves geoid accuracy by about one order of magnitude. Combined geoid solutions have been obtained with an accuracy of better than one decimetre.  相似文献   

2.
Sea surface height profiles derived from 2‐year, repeat track, Geosat altimeter data have been compared with a regional gravimetric geoid in the western North Sea, computed using a geopotential model and terrestrial gravity data. The comparison encompasses 18 Geosat profiles covering a 750 × 850 km area of the North Sea. After a second‐order polynomial was used to model the long‐wavelength differences which cannot be clearly separated over an area of this size, results show agreement to better than ±3 cm for wavelengths between approximately 20 and 750 km. In regions where terrestrial gravity data were not available to improve the geoid, similar comparisons with the OSU91A geopotential model alone show differences of up to ±6 cm. This illustrates the importance of incorporating local gravity data in regional geoid computations, and partly validates the regional gravimetric geoid solution and Geosat sea surface profiles in the western North Sea. It is concluded that, in marine areas where the sea surface topography is known to be small in magnitude, Geosat sea surface profiles can act as an independent control on gravimetric geoids in the medium‐wavelength range.  相似文献   

3.
The recovery of quantities related to the gravity field (i.e., geoid heights and gravity anomalies) is carried out in a test area of the central Mediterranean Sea using 5' × 5' marine gravity data and satellite altimeter data from the Geodetic Mission (GM) of ERS‐J. The optimal combination of the two heterogeneous data sources is performed using (1) the space‐domain least‐squares collocation (LSC) method, and (2) the frequency‐domain input‐output system theory (IOST). The results derived by these methods agree at the level of 2 cm in terms of standard deviation in the case of the geoid height prediction. The gravity anomaly prediction results by the same methods vary between 2.18 and 2.54 mGal in terms of standard deviation. In all cases, the spectral techniques have a much higher computational efficiency than the collocation procedure. In order to investigate the importance of satellite altimetry for gravity field modeling, a pure gravimetric geoid solution, carried out in a previous study for our lest area by the fast collocation approach (FCOL), is used in comparison with the combined geoid models. The combined solutions give more accurate results, at the level of about 15 cm in terms of standard deviation, than the gravimetric geoid solution, when the geoid heights derived by each method are compared with TOPEX altimeter sea surface heights (SSHs). Moreover, nonisotropic power spectral density functions (PSDs) can be easily used by IOST, while LSC requires isotropic covariance functions. The results show that higher prediction accuracies are always obtained when using a priori nonisotropic information instead of isotropic information.  相似文献   

4.
Satellite-borne altimeters have had a profound impact on geodesy, geophysics, and physical oceanography. To first order approximation, profiles of sea surface height are equivalent to the geoid and are highly correlated with seafloor topography for wavelengths less than 1000 km. Using all available Geos-3 and Seasat altimeter data, mean sea surfaces and geoid gradient maps have been computed for the Bering Sea and the South Pacific. When enhanced using hill-shading techniques, these images reveal in graphic detail the surface expression of seamounts, ridges, trenches, and fracture zones. Such maps are invaluable in oceanic regions where bathymetric data are sparse. Superimposed on the static geoid topography is dynamic topography due to ocean circulation. Temporal variability of dynamic height due to oceanic eddies can be determined from time series of repeated altimeter profiles. Maps of sea height variability and eddy kinetic energy derived from Geos-3 and Seasat altimetry in some cases represent improvements over those derived from standard oceanographic observations. Measurement of absolute dynamic height imposes stringent requirements on geoid and orbit accuracies, although existing models and data have been used to derive surprisingly realistic global circulation solutions. Further improvement will only be made when advances are made in geoid modeling and precision orbit determination. In contrast, it appears that use of altimeter data to correct satellite orbits will enable observation of basin-scale sea level variations of the type associated with climatic phenomena.  相似文献   

5.
The primary experiment on the Geodynamics Experimental Ocean Satellite‐3 (GEOS‐3) is the radar altimeter. This experiment's major objective is to demonstrate the utility of measuring the geometry of the ocean surface, i.e., the geoid. Results obtained from this experiment so far indicate that the planned objectives of measuring the topography of the ocean surface with an absolute accuracy of ±5 m can be met and perhaps exceeded. The GEOS‐3 satellite altimeter measurements have an instrument precision in the range of ±25 cm to ±50 cm when the altimeter is operating in the “short pulse”; mode. After one year's operations of the altimeter, data from over 5,000 altimeter passes have been collected. With the mathematical models developed and the altimeter data presently available, mapping of local areas of ocean topography has been realized to the planned accuracy levels and better. This paper presents the basic data processing methods employed and some interesting results achieved with the early data. Plots of mean sea surface heights as inferred by the altimeter measurements are compared with a detailed 1o × 1° gravimetric geoid.  相似文献   

6.
The continental shelf in the Arctic north of Russia consists of a series of epicontinental seas, which are the offshore continuation of potentially oil and gas basins on land. The geology of all these epicontinental seas is poorly known, due to the remoteness, the extreme climatic conditions and the extensive costs associated with seismic exploration. Radar altimeter sensors thus provide an invaluable tool for studying the geological structures off the coast. The unique ERS-1 contribution comes from its high latitude coverage (81.5 deg south to north), and the space and time density of its measurements (168-day repeat-orbit).The gravity anomaly field is derived from the geoid height measurements by computing the deflections of the vertical in the north-south and east-west directions and transforming these deflections into gravity anomalies. The gravimetry reveals interesting features of the basement of the Barents and Kara Seas which have not been chartered in recent, previous compilation maps of sedimentary thickness in the Arctic Ocean (Jackson and Oakey, 1988; Gramberg and Puscharovski, 1989). We obtain no indication of the SE-NW offshore Baikalian trend described by Fichler et al (1997) using ERS-1 gravimetry. Instead, the data indicate the presence of a north-south trending gravity high associated with the maximum sediment thickness within the South Barents Sea and the North Barents Sea Basins. Further geological studies are needed to interpret the gravimetric data, which directly addresses the problem of understanding the gravity signature of deep, old, sedimentary basins.  相似文献   

7.
We present an improved crossover adjustment procedure to determine mean sea surface height using TOPEX, 35-day repeat phase ERS-1, Geosat, and 168-day repeat phase ERS-1 satellite altimeter data. The mean sea surface frame defined by the TOPEX data is imposed as certain constraints in our crossover adjustment procedure rather than held fixed as in some other procedures. The new procedure is discussed in detail. Equations are developed to incorporate the a priori information of Topex data as well as other satellite altimeter data. The numerical computation result shows that the rms crossover discrepancies are reduced by an order of 1 cm when the Topex data is not fixed. Furthermore, the computed mean sea surface is less noisy and more realistic than that computed by the traditional procedure.  相似文献   

8.
We present an improved crossover adjustment procedure to determine mean sea surface height using TOPEX, 35-day repeat phase ERS-1, Geosat, and 168-day repeat phase ERS-1 satellite altimeter data. The mean sea surface frame defined by the TOPEX data is imposed as certain constraints in our crossover adjustment procedure rather than held fixed as in some other procedures. The new procedure is discussed in detail. Equations are developed to incorporate the a priori information of Topex data as well as other satellite altimeter data. The numerical computation result shows that the rms crossover discrepancies are reduced by an order of 1 cm when the Topex data is not fixed. Furthermore, the computed mean sea surface is less noisy and more realistic than that computed by the traditional procedure.  相似文献   

9.
The Seasat altimeter data has been completely adjusted by a crossing arc technique to reduce the crossover discrepancies to approximately ±30 cm in five regional adjustments. This data was then used to create sea surface heights at 1° intersections in the ocean areas with respect to the GRS80 ellipsoid. These heights excluded the direct tidal effects but included the induced permanent deformation. A geoid corresponding to these sea surface heights was computed, based on the potential coefficients of the GEML2 gravity field up to degree 6, augmented by Rapp's coefficients up to degree 180. The differences between sea surface heights and the geoid were computed to give approximate estimates of sea surface topography. These estimates are dominated by errors in both sea surface heights and geoid undulations. To optimally determine sea surface topography a spherical harmonic analysis of raw estimates was carried out and the series was further truncated at degree 6, giving estimates with minimum wavelengths on the order of 6000 km. The direction of current flow can be computed on a global basis using the spherical harmonic expansion of the sea surface topography. Ths has been done, not only for Seasat/GEML2 estimates, but also using the recent dynamic topography estimates of Levitus. The results of the two solutions are very similar and agree well with the major circulation features of the oceans.  相似文献   

10.
A 1 ° × 1 ° global detailed gravimetric geoid has been computed, using a combination of the Goddard Space Flight Center (GSFC) GEM‐8 potential field model and a set of 38,406 1° × 1° mean surface free air anomalies. Numerous short wavelength features are shown in the geoid contour map, e.g., the steep gradients associated with oceanic trenches. Comparison of this geoid with geoceiver derived and astrogeodetic geoid heights in the United States resulted in an r.m.s. difference of about 1.7 m. Comparisons with three GEOS‐3 altimeter derived geoidal profiles revealed that for areas with good surface data coverage, the relative agreement is generally better than 5 m.  相似文献   

11.
A 5’ detailed gravimetric geoid has been computed for the northwest Atlantic Ocean as ground truth for the GEOS‐3 satellite altimeter experiment. Comparisons of this geoid with satellite derived geoceiver station heights show an r.m.s. difference of 1.2 m. Initial comparisons with GEOS‐III altimeter derived geoid profiles have indicated a relative agreement of generally better than 2 m.  相似文献   

12.
A detailed gravimetric geoid around Japan has been computed on the basis of 30’ × 30’ block mean free‐air gravity anomalies and GSFC GEM‐8 geopotential coefficient set. The 30’ × 30’ block means were read from various gravity maps around Japan, and the block means have been compiled into the JHDGF‐1 gravity file. Since the gravity file is restricted around Japan (see Figure 1), additional gravity data are needed to perform the Stokes’ integration in the cap with radius ψ0 = 20°. The 1° × 1° block gravity means have been used outside the JHDGF‐1 region. The remarkable features of the gravimetric geoid occur over the trench areas. The geoidal dents over the trenches amount to ‐20~ ‐25 m in comparison with the geoidal heights in the land areas of Japan. The mean error of the 30’ × 30’ detailed gravimetric geoid obtained is estimated to be around 1.4 m, and the relative undulation of the geoid between the distance of a few hundred kilometers may be more accurate.  相似文献   

13.
It is broadly acknowledged that the precision of satellite-altimeter-measured instantaneous sea surface heights (SSH) is lower in coastal regions than in open oceans, due partly to contamination of the radar return from the coastal sea-surface state and from land topography. This study investigates the behavior of ERS-2 and POSEIDON altimeter waveform data in coastal regions and estimates a boundary around Australia's coasts in which the altimeter range may be poorly estimated by on-satellite tracking software. Over one million 20 Hz ERS-2 (March to April 1999) and POSEIDON (January 1998 to January 1999) radar altimeter waveform data were used over an area extending 350 km offshore Australia. The DS759.2 (5'resolution) ocean depth model and the GSHHS (0.2 km resolution) shoreline model were used together to define the coastal regions. Using the 50% threshold retracking points as the estimates of expected tracking gate, we determined that the sea surface height is contaminated out to maximum distance of between about 8 km and 22 km from the Australian shoreline for ERS-2, depending partly on coastal topography. Using the standard deviation of the mean waveforms as an indication of the general variability of the altimeter returns in the Australian coastal region shows obvious coastal contamination out to about 4 km for both altimeters, and less obvious contamination out to about 8 km for POSEIDON and 10 km for ERS-2. Therefore, ERS-2 and POSEIDON satellite altimeter data should be treated with some caution for distances less than about 22 km from the Australian coast and probably ignored altogether for distances less than 4 km.  相似文献   

14.
It is broadly acknowledged that the precision of satellite-altimeter-measured instantaneous sea surface heights (SSH) is lower in coastal regions than in open oceans, due partly to contamination of the radar return from the coastal sea-surface state and from land topography. This study investigates the behavior of ERS-2 and POSEIDON altimeter waveform data in coastal regions and estimates a boundary around Australia's coasts in which the altimeter range may be poorly estimated by on-satellite tracking software. Over one million 20 Hz ERS-2 (March to April 1999) and POSEIDON (January 1998 to January 1999) radar altimeter waveform data were used over an area extending 350 km offshore Australia. The DS759.2 (5'resolution) ocean depth model and the GSHHS (0.2 km resolution) shoreline model were used together to define the coastal regions. Using the 50% threshold retracking points as the estimates of expected tracking gate, we determined that the sea surface height is contaminated out to maximum distance of between about 8 km and 22 km from the Australian shoreline for ERS-2, depending partly on coastal topography. Using the standard deviation of the mean waveforms as an indication of the general variability of the altimeter returns in the Australian coastal region shows obvious coastal contamination out to about 4 km for both altimeters, and less obvious contamination out to about 8 km for POSEIDON and 10 km for ERS-2. Therefore, ERS-2 and POSEIDON satellite altimeter data should be treated with some caution for distances less than about 22 km from the Australian coast and probably ignored altogether for distances less than 4 km.  相似文献   

15.
Gravimetric geoid heights and gravimetric vertical deflections have been detemined for Europe including the Mediterranean Sea, North Sea, Norwegian Sea, Baltic Sea and parts of the North Atlantic Ocean in a 12′×20′ grid. The computation has been carried out by least squares spectral combination using closed integral formulas, combining 104 000 mean free air gravity anomalies in 6′×10′ blocks, 12 000 mean free air gravity anomalies in 10×10 blocks and the sherical harmonic model GEM9. The precision of the computed geoid heights has been estimated to ±1 m, the precision of the computed vertical deflections has been estimated to ±2″. Comparisons of the gravimetric geoid heights and vertical deflections with a number of other solutions have been carried out, confirming the precision estimation.  相似文献   

16.
Operational Altimeter Data Processing for Mesoscale Monitoring   总被引:1,自引:0,他引:1  
Since 1996, global, near-real-time maps of mesoscale anomalies derived from tandem sampling provided by altimeters aboard the TOPEX/Poseidon and ERS-2 satellites have been posted on web pages hosted at the Colorado Center for Astrodynamics Research. The original, near-real-time processing system was based on a quick-look analysis that referenced the data to a high-resolution gridded mean sea surface available at the time. Recently, state-of-the-art mean sea surfaces have been derived that are based on a more complete record of altimeter observations. An updated mesoscale monitoring system based on a new mean surface is described and shown to provide improved mesoscale monitoring to the successful system implemented in 1996.  相似文献   

17.
Since 1996, global, near-real-time maps of mesoscale anomalies derived from tandem sampling provided by altimeters aboard the TOPEX/Poseidon and ERS-2 satellites have been posted on web pages hosted at the Colorado Center for Astrodynamics Research. The original, near-real-time processing system was based on a quick-look analysis that referenced the data to a high-resolution gridded mean sea surface available at the time. Recently, state-of-the-art mean sea surfaces have been derived that are based on a more complete record of altimeter observations. An updated mesoscale monitoring system based on a new mean surface is described and shown to provide improved mesoscale monitoring to the successful system implemented in 1996.  相似文献   

18.
INTRODUCTIONThegeoidistheiargeopotentials~econfidingmostlywiththemeanseasurfaceandisdenotedastheheightrelativetotheidealelliPSes~eoftheearth.Thegeoidundulationsinglobalaceareupto100m.TheunevenstructureOftheearthgivesrisetotheunevenfeatureofthecitysot...  相似文献   

19.
This work presents the first calibration results for the SARAL/AltiKa altimetric mission using the Gavdos permanent calibration facilities. The results cover one year of altimetric observations from April 2013 to March 2014 and include 11 calibration values for the altimeter bias. The reference ascending orbit No. 571 of SARAL/AltiKa has been used for this altimeter assessment. This satellite pass is coming from south and nears Gavdos, where it finally passes through its west coastal tip, only 6 km off the main calibration location. The selected calibration regions in the south sea of Gavdos range from about 8 km to 20 km south off the point of closest approach. Several reference surfaces have been chosen for this altimeter evaluation based on gravimetric, but detailed regional geoid, as well as combination of it with other altimetric models.

Based on these observations and the gravimetric geoid model, the altimeter bias for the SARAL/AltiKa is determined as mean value of ?46mm ±10mm, and a median of ?42 mm ±10 mm, using GDR-T data at 40 Hz rate. A preliminary cross-over analysis of the sea surface heights at a location south of Gavdos showed that SARAL/AltiKa measure less than Jason-2 by 4.6 cm. These bias values are consistent with those provided by Corsica, Harvest, and Karavatti Cal/Val sites. The wet troposphere and the ionosphere delay values of satellite altimetric measurements are also compared against in-situ observations (?5 mm difference in wet troposphere and almost the same for the ionosphere) determined by a local array of permanent GNSS receivers, and meteorological sensors.  相似文献   

20.
Abstract

A set of time‐averaged sea surface heights at 1° intervals, derived from the adjusted SEASAT altimeter data, and the GEML2 gravity field are used to estimate the long‐wavelength stationary sea surface topography. In order to reduce the leakage of energy in the estimated sea surface topography, the GEML2 field is augmented by the Rapp81 gravity field to generate geoidal undulations with wavelengths consistent with the ones of sea surface heights. These undulations are subtracted from the sea surface heights, and the resulting differences are subjected to filtering in order to recover sea surface topography with minimum wavelengths of 6000 km and an estimated accuracy of 20–25 cm. These estimates agree well with oceanographic and other satellite‐derived results.

The direction of current flow can be computed on a global basis using the spherical harmonic expansion of sea surface topography. This is done not only for the SEASAT/GEML2 estimates, but also using the recent dynamic topography estimates of Levitus. The results of the two solutions are very similar and agree well with the major circulation features of the oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号