首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
揭示了葵花岛构造区浅层气规模小、埋藏浅、分布散、压力低、储层松散等分布特点,根据沉积环境和地质特征,推测浅层气为生物甲烷气,但并不完全排除是热生甲烷次生气藏的可能性,探讨了浅层气潜在的工程危害并提出相应防治措施,为今后海洋工程建设提供科学依据。  相似文献   

2.
随着人类开发利用海洋的深入发展,世界各海洋国家都在实施新的海洋战略。作为自然灾害之一的海洋地质灾害,越来越受到人们的重视。根据2009年在山东半岛南部滨浅海区实测的3 000km的高分辨率浅地层剖面资料,识别出研究区主要潜在的海洋地质灾害因素,着重探讨了浅埋不规则基岩面、埋藏古河道、浅层气、浅层断层等灾害地质的埋藏特征和分布范围,编制了研究区灾害地质分布图,并分析了这些灾害地质的形成机制及危害性,该研究可为海洋资源开发及海洋工程建设提供科学依据。  相似文献   

3.
Fluids discharged from subaerial springs along faults on a sediment diapir near the mouth of the Mississippi River are derived from buried marine pore waters which have been extensively altered chemically by processes of bacterial respiration, mineral precipitation and, possibly, by fractionation due to the presence of clays of high exchange capacity. Vertical mass transport of dissolved components in many shallow marine sediments is controlled by long-term compaction, diffusion and bioturbation. In areas of rapid sediment deposition, however, these processes can be overwhelmed by catastrophic episodes of sediment failure, vertical mixing and upward discharge of water, gas and dissolved species.  相似文献   

4.
The available geological and thermodynamic data, essential for the formation and accumulation of gas hydrates, have been integrated and broadly interpreted for the deeper waters of India. The preliminary studies indicate that, in all probability, vast gas hydrate resources exist in the shallow sediments under deep waters. The area of the Bay of Bengal and Arabian Sea, off the coast of India and Andaman Islands, have accumulated thick sediments, over 22 and 10 km, respec tively, during collision of the Indian Plate with the Tibetan Plate. Bottom Simulating Reflectors (BSRs), indicating the likely presence of gas hydrates, have been observed from multichannel and single-channel seismic reflec tion data west of the Andaman Islands and Kerala-Konkan offshore. The Indian continental shelf, slope, and rise areas have, at places, shown the presence of gas-charged sediments and gas seeps through faults. There are commercial oil and gas fields in the shallow waters of both the east and west coasts of India. These are indicative of generation of both biogenic as well as thermogenic gases in the offshore areas of India. For the first time, an attempt has been made to estimate in-place gas hydrate resources under deep waters of India beyond 600 m water depth to the legal continental shelf boundary, and to the Andaman Islands. The gas hydrate resources appear to be vast, and require extensive exploratory efforts for their precise mapping and quantitative assessment.  相似文献   

5.
A synthesis of high-resolution (Chirp, 2–7 kHz) subbottom profiles in the Ulleung Basin reveals patchy distribution of shallow (<90 m subbottom depth) gassy sediments in the eastern basin plain below 1,800-m water depth. The shallow gases in the sediments are associated with acoustic turbidities, columnar acoustic blankings, enhanced reflectors, dome structures, and pockmarks. Analyses of gas samples collected from a piston core in an earlier study suggest that the shallow gases are thermogenic in origin. Also, published data showing high amounts of organic matter in thick sections of marine shale (middle Miocene to lower Pliocene sequence) and high heat flow in the basin plain sediments are consistent with the formation of deep, thermogenic gas. In multi-channel deep seismic profiles, numerous acoustic chimneys and faults reflect that the deep, thermogenic gas would have migrated upwards from the deeper subsurface to the near-seafloor. The upward-migrating gases may have accumulated in porous debrites and turbidites (upper Pliocene sequence) overlain by impermeable hemipelagites (Quaternary sequence), resulting in the patchy distribution of shallow gases on the eastern basin plain.  相似文献   

6.
Gas hydrates affect the bulk physical properties of marine sediments, in particular, elastic parameters. Shear modulus is an important parameter for estimating the distribution of hydrates in the marine sediments. However, S-wave information is difficult to recover without proper datasets. Seafloor compliance, the transfer function between pressure induced by surface gravity waves and the associated seafloor deformation, is one of few techniques to study shear modulus in the marine sediments. The coherence between recorded time series of displacement and pressure provides a measure of the quality of the calculated transfer function, the seafloor compliance. Thus, it is important to understand how to collect high coherence datasets. Here we conducted a 10-month pilot experiment using broadband seismic sensors and differential pressure gauges. We found that data collected in shallow water depth and during rough seas gave high coherence. This study is the first time long-term data sets have been employed to investigate seafloor compliance data quality and its dependence on sea state. These results will help designing future large-scale compliance experiments to study anomalously high shear moduli associated with the presence of gas hydrate or cold vents, or alternatively anomalously low shear moduli, associated with partial melt and magma chamber.  相似文献   

7.
Methane is a powerful greenhouse gas and an important energy source. The global significance and impact in coastal zones of methane gas accumulation and seepage in sediments from coastal lagoon environments are still largely unknown. This paper presents results from four high-resolution seismic surveys carried out in the Ria de Aveiro barrier lagoon (Portugal) in 1999, 2002 and 2003. These comprise three chirp surveys (RIAV99, RIAV02, RIAV02A) and one boomer survey (RIAV03). Evidence of extensive gas accumulation and seepage in tidal channel sediments from the Ria de Aveiro barrier lagoon is presented here for the first time. This evidence includes: acoustic turbidity, enhanced reflections, acoustic blanking, domes, and acoustic plumes in the water column (flares). The stratigraphy and structural framework control the distribution and extent of gas accumulations and seepage in the study area. In these shallow systems, however, tidal altitude variations have a significant impact on gas detection using acoustic methods, by changing the raw amplitude of the enhanced seismic reflections, acoustic turbidity, and acoustic blanking in gas-prone areas. Direct evidence of gas escape from drill holes in the surrounding area has shown that the gas present in the Ria de Aveiro consists of biogenic methane. Most of the gas in the study area was probably generated mainly in Holocene lagoon sediments. Evidence of faults affecting the Mesozoic limestones and clays underlying some of the shallow gas occurrences, and the presence of high-amplitude reflections in these deeper units raise the possibility that some of this gas could have been generated in deeper sedimentary layers, and then migrated upward through the fractured Mesozoic strata.  相似文献   

8.
Gas in sediments has become an important subject of research for various reasons. It affects large areas of the sea floor where it is mainly produced. Gas and gas migration have a strong impact on the environmental situation as well as on sea floor stability. Furthermore, large research programs on gas hydrates have been initiated during the last 10 years in order to investigate their potential for future energy production and their climatic impact. These activities require the improvement of geophysical methods for reservoir investigations especially with respect to their physical properties and internal structures. Basic relationships between the physical properties and seismic parameters can be investigated in shallow marine areas as they are more easily accessible than hydrocarbon reservoirs. High-resolution seismic profiles from the Arkona Basin (SW Baltic Sea) show distinct ‘acoustic turbidity’ zones which indicate the presence of free gas in the near surface sediments. Total gas concentrations were determined from cores taken in the study area with mean concentrations of 46.5 ml/l wet sediment in non-acoustic turbidity zones and up to 106.1 ml/l in the basin centre with acoustic turbidity. The expression of gas bubbles on reflection seismic profiles has been investigated in two distinct frequency ranges using a boomer (600–2600 Hz) and an echosounder (38 kHz). A comparison of data from both seismic sources showed strong differences in displaying reflectors. Different compressional wave velocities were observed in acoustic turbidity zones between boomer and echosounder profiles. Furthermore, acoustic turbidity zones were differently characterised with respect to scattering and attenuation of seismic waves. This leads to the conclusion that seismic parameters become strongly frequency dependent due to the dynamic properties of gas bubbles.  相似文献   

9.
浅地层剖面测量是海洋工程勘察、灾害地质调查和大陆架海洋地质科学研究的重要手段,资料解译的准确程度将对地质调查和研究成果的可靠性造成直接影响。由于发收分置型浅地层剖面仪的激发装置与接收装置是分开的,当调查区域的水深过浅时,将其近似为自激自收的单道地震系统会导致地层的畸变,水深越浅地层畸变率越大。根据浅地层剖面仪的基本原理,推导出了浅部地层厚度畸变校正公式,为用C-View软件更准确地解译此类浅地层剖面资料提供了参考。海底沉积物的声速直接影响浅地层剖面地层厚度解译的准确性,利用卢博等建立的适用于中国东南近海的声速经验公式,在某人工岛构造调查中,根据地质钻孔获取的孔隙度参数计算各沉积层的平均声速,建立相应的声速结构剖面,对地层厚度进行校正,取得较好的效果,用孔隙度预测声速的方法参数容易获取,能够提高浅地层剖面资料的解译精度,使地层的厚度更接近于实际,具有一定的实用意义。  相似文献   

10.
中国东部晚更新世以来的海水进退   总被引:19,自引:4,他引:19  
耿秀山 《海洋学报》1981,3(1):114-130
我国东部滨海平原及其以东的浅海陆架,是第四纪冰川时期海岸线往复迁移的地带.要掌握海水的进退边界及反复过程,必须在沉积层序学和年代学的广泛研究基础上,依据古滨线沉积和残留地貌标志,与世界典型地区的海面变化模式进行对比,才能获得冰川性海面变化及构造型海面变化在我国东部海面升降及海水进退过程中互相影响、相互消长的时空表现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号