首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A zonal hydrographic section along 44.65°N, from the coast of Oregon to 300 km offshore, was occupied regularly (at least seasonally) from 1961 to 1971 and then sporadically until recently. Regular monitoring of this section to 160 km offshore resumed in July 1997 as part of the GLOBEC Long Term Observational Program; the recent data provide observations in Oregon coastal waters of El Niño 1997–98 and La Niña conditions that followed. The complete seasonal data from the decade 1961–1971 provide a basis for comparison with the recent temperature and salinity sections, steric height profiles, geostrophic velocity, and water mass characteristics. These data, and sporadic observations in intervening years, allow us to compare conditions during several ENSO events with the recent event and to search for evidence of climate change. The PFEL Coastal Upwelling Index, sea level from the University of Hawaii Sea Level Center, the Multivariate ENSO Index (MEI), the Pacific Decadal Oscillation (PDO), and outflow from the Columbia River are used to distinguish local and remote causes of variability in physical oceanographic conditions off Oregon. The sequence of El Niño/La Niña/El Niño in 1963–66, during a cool phase of PDO, provides a comparison to El Niño/La Niña of 1997–2000. El Niño in 1982–83 and 1997–98, during a warm phase of PDO, caused the largest oceanographic anomalies in the 40 years. The comparison indicates warming of the coastal ocean off Oregon and suggests a modulation of ENSO effects by PDO. Such modulation would mask evidence for secular climate change in our 40-year oceanographic data series.  相似文献   

2.
在黑潮入侵南海强弱的问题上,到底是太平洋年代际变化(Pacific Decadal Oscillation,PDO)还是厄尔尼诺-南方涛动(El Nio-Southern Oscillation,ENSO)现象在起关键作用,目前还存在着较大争议。本文先以高盐水作为黑潮入侵强弱的示踪物,用120°E断面的高盐水数据和北赤道流分叉点(North Equator Current Bifurcation,NEC-Y)的南北变动进行相关分析,接着,进一步用学者所用的黑潮入侵指数(KI指数,Kuroshio intrusion index和NEC指数,North Equatorial Current index)与北赤道流分叉点南北变动进行相关分析。最后,用EMD(Empirical Mode Decomposition)方法和相关关系分析法分别分析了PDO指数、Nio3.4指数与北赤道流分叉点南北变动的关系并用NECP风场数据探讨其影响机制。结果表明:(1)通过对120°E断面的高盐水的KI指数、NEC指数与NEC-Y的相关分析,表明了北赤道流分叉点的南北变动能够很好地指代黑潮入侵南海的强弱;(2)通过PDO指数和Nio3.4指数与北赤道流分叉点的南北变动的相关性分析,发现PDO指数、Nio3.4指数与北赤道流分叉点的南北变动都具有较好的相关性,都在0.5水平。这些良好的相关性表明了PDO和ENSO对黑潮入侵南海的强弱都具有重要的影响;(3)当处于厄尔尼诺年(拉尼娜)时,赤道太平洋发生西(东)风异常,使得北赤道流分叉点偏北(南),使吕宋岛东侧的黑潮流速减弱(加强),黑潮入侵南海增强(减弱);当PDO处于暖(冷)阶段时,会加强热带太平洋的西(东)风异常,使得黑潮入侵南海增强(减弱)。  相似文献   

3.
ENSO variability and the eastern tropical Pacific: A review   总被引:3,自引:0,他引:3  
El Niño-Southern Oscillation (ENSO) encompasses variability in both the eastern and western tropical Pacific. During the warm phase of ENSO, the eastern tropical Pacific is characterized by equatorial positive sea surface temperature (SST) and negative sea level pressure (SLP) anomalies, while the western tropical Pacific is marked by off-equatorial negative SST and positive SLP anomalies. Corresponding to this distribution are equatorial westerly wind anomalies in the central Pacific and equatorial easterly wind anomalies in the far western Pacific. Occurrence of ENSO has been explained as either a self-sustained, naturally oscillatory mode of the coupled ocean–atmosphere system or a stable mode triggered by stochastic forcing. Whatever the case, ENSO involves the positive ocean–atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four requisite negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance being time-dependent.ENSO variability is most pronounced along the equator and the coast of Ecuador and Peru. However, the eastern tropical Pacific also includes a warm pool north of the equator where important variability occurs. Seasonally, ocean advection seems to play an important role for SST variations of the eastern Pacific warm pool. Interannual variability in the eastern Pacific warm pool may be largely due to a direct oceanic connection with the ENSO variability at the equator. Variations in temperature, stratification, insolation, and productivity associated with ENSO have implications for phytoplankton productivity and for fish, birds, and other organisms in the region. Long-term changes in ENSO variability may be occurring and are briefly discussed. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.  相似文献   

4.
Features of El Niño events and their biological impacts in the western North Pacific are reviewed, focusing on interactions between ENSO and the East Asian monsoon. Impacts of El Niño on the climate in the Far East become evident as ‘cool summers and warm winters’. Effects of climate regime shift on ENSO activities, western boundary currents and upper-ocean stratification, as well as their biological consequences are summarized. These have been:
1. In the western equatorial Pacific, an eastward extension of the warm pool associated with El Niño events induces an eastward shift of main fishing grounds of skip jack and big eye tunas.
2. The surface salinity front in the North Equatorial Current region retreats southward, associated with El Niño events. This leads to a southward shift of the spawning ground of Japanese eel, which is responsible for a reduction in the transport of the larval eels to the Kuroshio and Japanese coastal region, causing poor recruitment.
3. Intensification of winter cooling and vertical mixing associated with La Niña (El Niño) events in the northern subtropical region of the western (central) North Pacific reduces surface chlorophyll concentration levels and larval feeding condition for both Japanese sardines and the autumn cohort of Neon squid during winter–early spring. The semi-decadal scale calm winter that occurred during the early 1970s triggered the first sharp increase of sardine stock around Japan.
4. A remarkable weakening of southward intrusion of the Oyashio off the east coast of Japan during 1988–91, resulted in a decrease in chlorophyll concentrations and mesozooplankton biomass in late spring–early summer of the Kuroshio-Oyashio transition region. Changes occurred in the dominant species of small pelagic fish, through successive recruitment failures of Japanese sardine.

Article Outline

1. Introduction
2. Linkage between Asian monsoon and ENSO
2.1. Features of Asian monsoon and its role in ENSO
2.2. Influence of ENSO events on summer and winter climate and hydrographic conditions in the western North Pacific
3. Evidence of biotic impacts of ENSO events in the western and central North Pacific
3.1. Eastward shift or spread of fishing grounds of skipjack, bigeye and albacore
3.2. Decrease of recruitment rate of neon squid and Japanese eel
3.3. Increase of plankton biomass in El Niño winters in the northern subtropical gyre south of Japan
3.4. Bleaching phenomena of corals around the Okinawa Islands
4. Discussion
4.1. Modulation of extra-tropical effect of ENSO by inter-decadal variations
4.2. Effects of ENSO and ocean/climate regime shifts on plankton biomass and population variation of small pelagic fish
5. Conclusion
Acknowledgements
References

1. Introduction

During El Niño events the climate in Northeast Asia is generally cool and wet in summer, and warm and calm in winter (Kurihara and Kimura). In the 1998 summer, near the end of 1997/98 El Niño, the East China Sea and southern part of the Japan Sea were covered with abnormally low saline water. This was the result of the huge amounts of fresh water that were discharge from the Yangtze River and caused poor year classes of Japanese common squid.During the recent cold regime that persisted between 1976/77 and 1987/88 in the North Pacific, Japanese sardine, Sardinops melanostictus, maintained a higher stock level, whereas stocks of anchovy, Engraulis spp., remained low (Kasai; Yasuda and Nakata).To clarify the features of this biological response associated with El Niño events and climate regime shifts, in this paper we provide evidence of several environmental and biological responses in the western and central North Pacific. First, we review the linkage between ENSO and the Asian Monsoon. Second, we present data on the extra-tropical effects of El Niño and La Niña on marine ecosystems and the ocean environment. Finally, we describe the modification of extra-tropical effects of ENSO by interdecadal variations in the ocean and the atmosphere.

2. Linkage between Asian monsoon and ENSO

2.1. Features of Asian monsoon and its role in ENSO

Climate of the western North Pacific is dominated by monsoon winds and precipitation. In summer, the southeast monsoon develops between the Tibetan Low and the North Pacific Subtropical High (Fig. 1a). When the summer monsoon encounters the Japanese mountain range, it produces a considerable amount of precipitation on the Pacific side of Japan. In winter, however, the northwesterly monsoon develops between the Siberian High and the Aleutian Low superimposed on the westerly wind (Fig. 1b).  相似文献   

5.
As part of the international MENU collaboration, we compared and contrasted ecosystem responses to climate-forced oceanographic variability across several high latitude regions of the North Pacific (Eastern Bering Sea (EBS) and Gulf of Alaska (GOA)) and North Atlantic Oceans (Gulf of Maine/Georges Bank (GOM/GB) and the Norwegian/Barents Seas (NOR/BAR)). Differences in the nitrate content of deep source waters and incoming solar radiation largely explain differences in average primary productivity among these ecosystems. We compared trends in productivity and abundance at various trophic levels and their relationships with sea-surface temperature. Annual net primary production generally increases with annual mean sea-surface temperature between systems and within the EBS, BAR, and GOM/GB. Zooplankton biomass appears to be controlled by both top-down (predation by fish) and bottom-up forcing (advection, SST) in the BAR and NOR regions. In contrast, zooplankton in the GOM/GB region showed no evidence of top-down forcing but appeared to control production of major fish populations through bottom-up processes that are independent of temperature variability. Recruitment of several fish stocks is significantly and positively correlated with temperature in the EBS and BAR, but cod and pollock recruitment in the EBS has been negatively correlated with temperature since the 1977 shift to generally warmer conditions. In each of the ecosystems, fish species showed a general poleward movement in response to warming. In addition, the distribution of groundfish in the EBS has shown a more complex, non-linear response to warming resulting from internal community dynamics. Responses to recent warming differ across systems and appear to be more direct and more pronounced in the higher latitude systems where food webs and trophic interactions are simpler and where both zooplankton and fish species are often limited by cold temperatures.  相似文献   

6.
南海海面高度变化及其与太平洋上涛动信号的关系   总被引:1,自引:1,他引:0  
本文使用循环平稳经验正交函数(CSEOF)方法分析了南海海面高度(SCS-SSH)的时空变化模态,并对它们与太平洋海盆尺度振荡的关系进行了探讨分析。结果表明,SCS-SSH的第一个CSEOF模态是季节变化模态,其变化强度受到一个与厄尔尼诺-南方涛动(ENSO)有关的低频信号的调制,即在厄尔尼诺期间季节变化的幅度减弱(最大可降低30%,1997/98)而在拉尼娜期间季节变化增强。SCS-SSH的第二个CSEOF模态是年际-年代际尺度的低频变化模态,其空间模态的月与月之间的差异微弱,而时间模态和太平洋年代际振荡(PDO)指数高度相关。然后,我们使用独立成分分析(ICA)方法提取了太平洋中的五个主要振荡成分,并检验了它们对SCS-SSH变化的各自影响。分析表明,纯粹的ENSO模态(类似于太平洋东部型ENSO)对SCS-SSH的低频变化的影响比较微弱,而ENSO的红化模态(类似于太平洋中部型ENSO)对SCS-SSH的低频变化具有明显影响。由于ENSO的红化模态是PDO信号的一个主要成分,这一结果解释了为什么在影响SCS-SSH的低频变化上PDO比ENSO更重要。径向鞍型振荡模态、黑潮延伸体处的增温模态、以及赤道的降温模态也由ICA方法提取出来,但它们对SCS-SSH低频变异的影响微弱。进一步的分析表明,太平洋的涛动信号可能以不同的方式来影响南海海面高度变化和海表温度变化。  相似文献   

7.
太平洋海温场两种不同时间尺度气候模态的分析   总被引:8,自引:1,他引:7  
利用经验正交函数分解、多元线性回归分析、小波分析和离散功率谱等方法,对太平洋年代际振荡(PDO)和ENSO的关系进行研究,发现太平洋海温场中主要存在着PDO和ENSO两种气候模态.用线性回归分析方法对这两种模态进行分离,结果表明,去除ENSO信息后,太平洋海温变化的关键区出现于北太平洋中纬度地区,PDO的信号很明显;而去除PDO信息后,海温变化的关键区位于赤道中、东太平洋地区,ENSO的信号较明显,此时ENSO循环不具有年代际振荡的特征,表明PDO对ENSO的调制作用是ENSO事件具有年代际变化特征的重要原因.  相似文献   

8.
A recently proposed method for estimating nitrate and new production from remotely sensed data (Goes and Goes) allowed us to observe significant deviations from the normal in the quantum of winter-time nitrate injected into the euphotic column and its consumption by phytoplankton in the North Pacific following the El Niño event of 1997. Results from this study allowed us to observe large differences in the ways in which the El Niño event affected the western and the eastern margins of the North Pacific basin. For the western North Pacific, a long-term (1972–1992) historical record of oceanographic data provided us with clear evidence supporting of our findings from satellite observations. In the eastern North Pacific Ocean also, our results compared well with those previously reported (Wong, Whitney, Matear, & Iseki, 1998). While it is clear from this study that El Niño/La Niña oscillations can have a major influence on interannual variations in biological processes in the North Pacific, these results also serve to highlight the value of remote sensing as a tool for studying large regional to basin-scale biological oceanographic events.  相似文献   

9.
We used 16 years of multiplatform-derived biophysical data to reveal the footprint of the Pacific Decadal Oscillation (PDO) on the phytoplankton biomass of the northwestern Pacific Ocean in terms of chlorophyll a concentration (Chl), and to discern the probable factors causing the observed footprint. There were meridional differences in the response of phytoplankton to changes of environmental conditions associated with deepening of the mixed layer during the positive phase of the PDO. In general, deepening of the mixed layer increased phytoplankton biomass at low latitudes (increase of Chl due to increase of nutrient supply), but lowered phytoplankton at high latitudes (decrease of Chl due to reduction of average irradiance and temperature in the mixed layer). The areas where Chl increased or decreased changed meridionally and seasonally in accord with regulation of nutrient and light/temperature limitation by changes of mixed layer depth. The observed PDO footprint on Chl in the northwestern Pacific is likely superimposed on the high-frequency component of the PDO excited by El Niño/Southern Oscillation interannual variability. On a decadal time scale, however, Chl in the northwestern Pacific were more strongly associated with the recently discovered North Pacific Gyre Oscillation.  相似文献   

10.
The physical, chemical and biological perturbations in central California waters associated with the strong 1997–1998 El Niño are described and explained on the basis of time series collected from ships, moorings, tide gauges and satellites. The evolution of El Niño off California closely followed the pattern observed in the tropical Pacific. In June 1997 an anomalous influx of warm southerly waters, with weak signatures on coastal sea level and thermocline depth, marked the onset of El Niño in central California. The timing was consistent with propagation from the tropics via the equatorial and coastal wave-guide. By late 1997, the classical stratified ocean condition with a deep thermocline, high sea level, and warm sea surface temperature (SST) commonly associated with El Niño dominated the coastal zone. During the first half of 1998 the core of the California Current, which is normally detected several hundred kilometers from shore as a river of low salinity, low nutrient water, was hugging the coast. High nutrient, productive waters that occur in a north–south band from the coast to approximately 200 km offshore during cool years disappeared during El Niño. The nitrate in surface waters was less than 20% of normal and new production was reduced by close to 70%. The La Niña recovery phase began in the fall of 1998 when SSTs dropped below normal, and ocean productivity rebounded to higher than normal levels. The reduction in coastal California primary productivity associated with El Niño was estimated to be 50 million metric tons of carbon (5×1013 g C). This reduction certainly had deleterious effects on zooplankton, fish, and marine mammals. The 1992–1993 El Niño was more moderate than the 1997–1998 event, but because its duration was longer, its overall chemical and biological impact may have been comparable. How strongly the ecosystem responds to El Niño appears related to the longer-term background climatic state of the Pacific Ocean. The 1982–1983 and 1992–1993 El Niños occurred during the warm phase of the Pacific Decadal Oscillation (PDO). The PDO may have changed sign during the 1997–1998 El Niño, resulting in weaker ecological effects than would otherwise have been predicted based on the strength of the temperature anomaly.  相似文献   

11.
The neon flying squid Ommastrephes bartramii is an economically important species in the Northwest Pacific Ocean. The life cycle of O. bartramii is highly susceptible to climatic and oceanic factors. In this study, we have examined the impacts of climate variability and local biophysical environments on the interannual variability of the abundance of the western winter-spring cohort of O. bartramii over the period of 1995–2011. The results showed that the squid had experienced alternant positive and negative Pacific Decadal Oscillation(PDO) over the past 17 years during which five El Ni?o and eight La Ni?a events occurred. The catch per unit effort(CPUE) was positively correlated with the PDO index(PDOI) at a one-year time lag. An abnormally warm temperature during the La Ni?a years over the positive PDO phase provided favorable oceanographic conditions for the habitats of O.bartramii, whereas a lower temperature on the fishing ground during the El Ni?o years over the negative PDO phase generally corresponded to a low CPUE. The same correlation was also found between CPUE and Chl a concentration anomaly. A possible explanation was proposed that the CPUE was likely related to the climateinduced variability of the large-scale circulation in the Northwest Pacific Ocean: high squid abundance often occurred in a year with a significant northward meander of the Kuroshio Current. The Kuroshio Current advected the warmer and food-rich waters into the fishing ground, and multiple meso-scale eddies arising from current instability enhanced the food retention on the fishing ground, all of which were favorable for the life stage development of the western squid stocks. Our results help better understand the potential process that the climatic and oceanographic factors affect the abundance of the winter-spring cohort of O. bartramii in the Northwest Pacific Ocean.  相似文献   

12.
How are large western hemisphere warm pools formed?   总被引:1,自引:0,他引:1  
During the boreal summer the Western Hemisphere warm pool (WHWP) stretches from the eastern North Pacific to the tropical North Atlantic and is a key feature of the climate of the Americas and Africa. In the summers following nine El Niño events during 1950–2000, there have been five instances of extraordinarily large warm pools averaging about twice the climatological annual size. These large warm pools have induced a strengthened divergent circulation aloft and have been associated with rainfall anomalies throughout the western hemisphere tropics and subtropics and with more frequent hurricanes. However, following four other El Niño events large warm pools did not develop, such that the mere existence of El Niño during the boreal winter does not provide the basis for predicting an anomalously large warm pool the following summer.In this paper, we find consistency with the hypothesis that large warm pools result from an anomalous divergent circulation forced by sea surface temperature (SST) anomalies in the Pacific, the so-called atmospheric bridge. We also find significant explanations for why large warm pools do not always develop. If the El Niño event ends early in the eastern Pacific, the Pacific warm anomaly lacks the persistence needed to force the atmospheric bridge and the Atlantic portion of the warm pool remains normal. If SST anomalies in the eastern Pacific do not last much beyond February of the following year, then the eastern North Pacific portion of the warm pool remains normal. The overall strength of the Pacific El Niño does not appear to be a critical factor. We also find that when conditions favor a developing atmospheric bridge and the winter atmosphere over the North Atlantic conforms to a negative North Atlantic Oscillation (NAO) pattern (as in 1957–58 and 1968–69), the forcing is reinforced and the warm pool is stronger. On the other hand, if a positive NAO pattern develops the warm pool may remain normal even if other circumstances favor the atmospheric bridge, as in 1991–92. Finally, we could find little evidence that interactions internal to the tropical Atlantic are likely to mitigate for or against the formation of the largest warm pools, although they may affect smaller warm pool fluctuations or the warm pool persistence.  相似文献   

13.
ENSO循环相联系的北太平洋低纬度异常西边界流   总被引:1,自引:1,他引:0  
用SODA海洋同化和NCEP大气再分析资料,分析了热带太平洋次表层海温异常主要模态与北太平洋低纬度西边界流海域上层海洋环流和亚洲-北太平洋地区大气垂直和水平流场变化之间的关系,得到以下结果:(1) 在热带太平洋海洋次表层ENSO事件具有两种模态,二者组合构成ENSO循环。第一模态为ENSO成熟期,主要出现在冬季,第二模态为ENSO过渡期,主要出现夏季。(2) ENSO循环对北太平洋低纬度西边界流区上层海洋环流有重要影响。在El Niño发展期或La Niña 衰退期,该区出现气旋性异常环流,北赤道流(NEC)加强,NEC分叉位置北移,棉兰老海流(MC)加大,菲律宾以东黑潮(KC)减小,北赤道逆流(NECC)最强。在El Niño(La Niña)成熟期,该区气旋性(反气旋性)异常环流达最强,NEC最强(最弱),NEC分叉位置最北(最南),MC最大(最小),KC最小(最大),NECC减弱(加强)。在El Niño衰退期或La Niña发展期与El Niño发展期相反,该区出现反气旋性异常环流,由此导致相应流系异常发生反位相变化。(3) ENSO循环对北太平洋低纬度西边界流海域上层海洋环流的影响是通过ENSO事件期间热带太平洋热力状况异常改变上空大气环流来实现的。ENSO事件首先造成热带太平洋海洋热力状况异常,导致其上空对流活动异常,后者直接或间接通过“大气桥”能量传输引起相关地区大气环流场的变化,致使海面风应力场异常,进而强迫上层海洋环流场的相应变化。文章最后还分析了ENSO事件期间菲律宾附近异常反气旋或异常气旋性风场的产生和持续原因,讨论了北太平洋低纬度西边界流海域海气相互作用在ENSO循环中的贡献。  相似文献   

14.
15.
Cohort abundance of walleye pollock (Theragra chalcogramma) is subject to strong interannual variation in the eastern Bering Sea, and this variation is known to be determined largely at the age-0 stage. We estimated the spatial distributions and densities of age-0 walleye pollock in five nursery areas around the eastern Bering shelf in three successive years (1997–1999) from acoustic survey data. Concurrently, we calculated estimates of the spatial distribution of euphausiids, a major prey of age-0 walleye pollock, and estimates of spatial overlap of groundfish predators with the age-0 walleye pollock. The analyses showed that all nursery areas had low densities of age-0 walleye pollock in 1997, which ultimately produced the weakest adult year-class. In the intermediate year of 1998, age-0 densities were low to medium, and in 1999, which produced the strongest of the three adult year-classes, all nursery areas had medium to high age-0 walleye pollock densities. Euphausiid distributions had a consistently positive spatial relationship with age-0 walleye pollock. Groundfish predator density ratios were positively related to age-0 walleye pollock density when age-0 walleye pollock were displaced relatively northward. Our results suggest that abundance of age-0 walleye pollock, and hence of adult cohorts in the eastern Bering Sea, can be predictable from a concise set of indicators: the densities of age-0 walleye pollock at nursery areas in mid- to late-summer, their spatial relationship to euphausiids and groundfish predators, and the latitudinal trend of their distributions. The 3 years 1997–1999 had significant differences of physical conditions in the eastern Bering Sea, and represent an advantageous framework for testing these hypotheses.  相似文献   

16.
Limitations in sea surface salinity (SSS) observations and timescale separation methods have led to an incomplete picture of the mechanisms of SSS decadal variability in the tropical Pacific Ocean, where the El Niño Southern Oscillation (ENSO) dominates. Little is known regarding the roles of the North Pacific Gyre Oscillation (NPGO) and the Pacific Decadal Oscillation (PDO) in the large-scale SSS variability over the tropical basin. A self-organizing map (SOM) clustering analysis is performed on the intrinsic mode function (IMF) maps, which are decomposed from SSS and other hydrological fields by ensemble empirical mode decomposition (EEMD), to extract their asymmetric features on decadal timescales over the tropical Pacific. For SSS, an anomalous pattern appeared during 1997 to 2004, a period referred to as the anomalous late 1990s, when strong freshening prevailed in large areas over the southwestern basin and moderate salinization occurred in the western equatorial Pacific. During this period, the precipitation and surface currents were simultaneously subjected to anomalous fluctuations: the precipitation dipole and zonal current divergence along the equator coincided with the SSS increase in the far western equatorial Pacific, while the weak zonal current convergence in the southwestern basin and large-scale southward meridional currents tended to induce SSS decreases there. The dominant decadal modes of SSS and sea surface temperature (SST) in the tropical Pacific both resemble the NPGO but occur predominantly during the negative and positive NPGO phases, respectively. The similarities between the NPGO and Central Pacific ENSO (CP-ENSO) in their power spectra and associated spatial patterns in the tropics imply their dynamical links; the correspondence between the NPGO-like patterns during negative (positive) phases and the CP La Niña (CP El Niño) patterns for SSS is also discussed.  相似文献   

17.
Primary production in the eastern tropical Pacific: A review   总被引:2,自引:12,他引:2  
The eastern tropical Pacific includes 28 million km2 of ocean between 23.5°N and S and Central/South America and 140°W, and contains the eastern and equatorial branches of the north and South Pacific subtropical gyres plus two equatorial and two coastal countercurrents. Spatial patterns of primary production are in general determined by supply of macronutrients (nitrate, phosphate) from below the thermocline. Where the thermocline is shallow and intersects the lighted euphotic zone, biological production is enhanced. In the eastern tropical Pacific thermocline depth is controlled by three interrelated processes: a basin-scale east/west thermocline tilt, a basin-scale thermocline shoaling at the gyre margins, and local wind-driven upwelling. These processes regulate supply of nutrient-rich subsurface waters to the euphotic zone, and on their basis we have divided the eastern tropical Pacific into seven main regions. Primary production and its physical and chemical controls are described for each.Enhanced rates of macronutrient supply maintains levels of primary production in the eastern tropical Pacific above those of the oligotrophic subtropical gyres to the north and south. On the other hand lack of the micronutrient iron limits phytoplankton growth (and nitrogen fixation) over large portions of the open-ocean eastern tropical Pacific, depressing rates of primary production and resulting in the so-called high nitrate-low chlorophyll condition. Very high rates of primary production can occur in those coastal areas where both macronutrients and iron are supplied in abundance to surface waters. In these eutrophic coastal areas large phytoplankton cells dominate; conversely, in the open-ocean small cells are dominant. In a ‘shadow zone’ between the subtropical gyres with limited subsurface ventilation, enough production sinks and decays to produce anoxic and denitrified waters which spread beneath very large parts of the eastern tropical Pacific.Seasonal cycles are weak over much of the open-ocean eastern tropical Pacific, although several eutrophic coastal areas do exhibit substantial seasonality. The ENSO fluctuation, however, is an exceedingly important source of interannual variability in this region. El Niño in general results in a depressed thermocline and thus reduced rates of macronutrient supply and primary production. The multi-decadal PDO is likely also an important source of variability, with the ‘El Viejo’ phase of the PDO resulting in warmer and lower nutrient and productivity conditions similar to El Niño.On average the eastern tropical Pacific is moderately productive and, relative to Pacific and global means, its productivity and area are roughly equivalent. For example, it occupies about 18% of the Pacific Ocean by area and accounts for 22–23% of its productivity. Similarly, it occupies about 9% of the global ocean and accounts for 10% of its productivity. While representative, these average values obscure very substantial spatial and temporal variability that characterizes the dynamics of this tropical ocean.  相似文献   

18.
渤海海冰的年际和年代际变化特征与机理   总被引:1,自引:0,他引:1  
根据1951-2013年间的渤海冰情等级资料,利用最大熵谱分析、相关分析和合成分析等方法,研究了渤海冰情等级的年际和年代际变化特征,探讨了局地气候、大气环流、ENSO(El Nio-Southern Oscillation)和太平洋年代际振荡(PDO)对海冰的影响。结果表明,渤海海冰具有明显的年际和年代际变化特征,并在1972年前后发生了一次由重到轻的气候跃变,在跃变后冰情较跃变前平均降低了0.7级。相关分析与合成分析结果显示,渤海冰情的年际变化除受局地气候的影响外,还受西太平洋副热带高压(副高)、极涡和欧亚环流的共同调控,特别在1972年以后,秋季副高、冬季欧亚和亚洲纬向环流对渤海冰情的年际变化均有重要影响,可作为渤海海冰预报的重要因子,而春季PDO、ENSO、冬季副高及欧亚和亚洲经向环流则是渤海冰情年代际变化的影响因素。  相似文献   

19.
We studied the relationship between the dominant patterns of sea surface temperature (SST) variability in the North Pacific and the North Atlantic. The patterns are known as the Pacific Decadal Oscillation (PDO) and the Atlantic Multi-decadal Oscillation (AMO). In the analysis we used two different observational data sets for SST. Due to the high degree of serial correlation in the PDO and AMO time series, various tests were carried out to assess the significance of the correlations. The results demonstrated that the correlations are significant when the PDO leads the AMO by 1 year and when the AMO leads the PDO by 11–12 years. The possible physical processes involved are discussed, along with their potential implication for decadal prediction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号