首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
During 1995–2011, annual production of winter-spring cohort of Ommastrephes bartramii for Chinese squidjigging fishery has greatly fluctuated, which is closely related to the environmental conditions on the spawning and fishing grounds. To better understand how squid recruitment and abundance were influenced by ocean environmental conditions, biological and physical environmental variables including sea surface temperature(SST), SST anomaly(SSTA), chlorophyll a(Chl a) concentration and the Kuroshio Current were examined during years with the highest(1999), intermediate(2005), and lowest(2009) catches. Catch per unit effort(CPUE) of the squid-jigging vessels was used as an indicator of squid abundance. The results indicated that high SST and Chl a concentration on the spawning ground in 1999 resulted in favorable incubation and feeding conditions for squid recruitment. Whereas the suitable spawning zone(SSZ) in 2009 shifted southward and coincided with low SST and Chl a concentration, resulting in a reduction in the squid recruitment. The small difference of SSZ area in the three years suggested the SSZ provided limited influences on the variability in squid recruitment. Furthermore,high squid abundance in 1999 and 2005 was associated with warm SSTA on the fishing ground. While the cool SSTA on the fishing ground in 2009 contributed to adverse habitat for the squid, leading to extremely low abundance. It was inferred that strengthened intensity of the Kuroshio force generally yielded favorable environmental conditions for O. bartramii. Future research are suggested to focus on the fundamental research on the early life stage of O. bartramii and mechanism of how the ocean-climate variability affects the squid abundance and spatial distribution by coupling physical model with squid biological process to explore transport path and abundance distribution.  相似文献   

2.
In the Northwest Pacific Ocean, the squid jigging fisheries from China, Japan and other countries and regions have targeted the west winter-spring cohort of neon flying squid(Ommastrephes bartramii) from August to November since the 1970 s. This squid is a short-lived ecological opportunist with a life-span of about one year,and its population is labile and recruitment variability is driven by the environment or climate change. This variability provides a challenge for ones to forecast the key habitats affected by climate change. The catch data of O. bartramii from Chinese squid jigging fishery and the satellite-derived sea surface temperature(SST) data are used in the Northwest Pacific Ocean from August to November of 1998 to 2004, the SST preferences of O.bartramii corresponding to high values of catch per fishing day(CPUE) are determined and monthly potential habitats are predicted using a histogram analysis of the SST data. The possible changes in the potential habitats of O. bartramii in the Northwest Pacific Ocean are estimated under four climate change scenarios based on the Fourth Assessment Report(AR4) of the Intergovernmental Panel on Climate Change, i.e., 0.5, 1, 2 and 4°C increases in the SST because of the climate change. The results reveal an obvious poleward shift of the potential habitats of O. bartramii in the Northwest Pacific Ocean.  相似文献   

3.
Two predominant currents, the warm Kuroshio Current and the cold Oyashio Current, meet in the Northwest Pacific Ocean. The dynamics of physical oceanographic structures in this region, including frontal zones and meandering eddies, result in a highly productive habitat that serves as a favorable feeding ground for various commercially important species. Neon flying squid, Ommastrephes bartramii, is an important oceanic squid, which is widely distributed in the North Pacific Ocean. Based on the catch data collected by Chinese squid jigging fleets and relevant environmental data, including sea surface temperature(SST) and fronts(represented by gradients of SST and thermocline) during 1998–2009, the variations of oceanic fronts and their influence on the fishing grounds of O. bartramii were evaluated, and the differences in distribution of fishing grounds of O. bartramii in 2000 and 2002 were compared by describing the differences in vertical temperature between 0–300 m. It was found that the preferred horizontal temperature gradient of SST for O. bartramii tended to be centered at 0.01–0.02°C/nm, which attracted nearly 80% of the total fishing effort, and the preferred horizontal temperature gradients at the 50 m and 105 m layers were mainly located at 0.01–0.03°C/nm, which accounted for more than 70% of the total fishing effort during August–October. The preferred vertical temperature gradient within the 0–50 m layer for O. bartramii tended to be centered at 0.15–0.25°C/m during August and September and at 0.10–0.15°C/m in October, implying that the mixed surface layer was distributed at depths of 0–50 m. It was concluded that the vertical temperature gradient was more important than the horizontal temperature gradient in playing a role in forming the fishing ground. The results improved our understanding of the spatial dynamics of the O. bartramii fishery.  相似文献   

4.
Ommastrephes bartramii is an ecologically dependent species and has great commercial values among the AsiaPacific countries. This squid widely inhabits the North Pacific, one of the most dynamic marine environments in the world, subjecting to multi-scale climatic events such as the Pacific Decadal Oscillation(PDO). Commercial fishery data from the Chinese squid-jigging fleets during 1995–2011 are used to evaluate the influences of climatic and oceanic environmental variations on the spatial distribution of O. bartramii. Significant interannual and seasonal variability are observed in the longitudinal and latitudinal gravity centers(LONG and LATG) of fishing ground of O. bartramii. The LATG mainly occurred in the waters with the suitable ranges of environmental variables estimated by the generalized additive model. The apparent north-south spatial shift in the annual LATG appeares to be associated with the PDO phenomenon and is closely related to the sea surface temperature(SST)and sea surface height(SSH) on the fishing ground, whereas the mixed layer depth(MLD) might contribute limited impacts to the distribution pattern of O. bartramii. The warm PDO regimes tend to yield cold SST and low SSH, resulting in a southward shift of LATG, while the cold PDO phases provid warm SST and elevated SSH,resulting in a northward shift of LATG. A regression model is developed to help understand and predict the fishing ground distributions of O. bartramii and improve the fishery management.  相似文献   

5.
The Japanese common squid Todarodes pacificus is an economically important species with one year lifespan,which is significantly influenced by climatic and environmental variability. According to the fishery data of the winter cohort of T. pacificus from 2003 to 2012, as well as environmental data and the Oceanic Ni?o index(ONI,which was defined by the sea surface temperature(SST) anomaly in the Ni?o 3.4 region), variations in the SST,chlorophyll a(Chl a) concentration, suitable spawning area(SSA) and sea surface height anomaly(SSHA) on the spawning ground of T. pacificus were examined under the El Ni?o and La Ni?a conditions. Their influences on squid abundance(defined by catch per unit effort, CPUE) were further assessed. The results showed that seasonal changes were found in SST, Chl a and SSA on the spawning ground of T. pacificus. Correlation analysis suggested that annual CPUE was significantly positively correlated with Chl a and SSA(p0.05), but had insignificant relationship with SST(p0.05). Moreover, the El Ni?o and La Ni?a events tended to dominate the changes of SSA and Chl a concentration in the key area between 25°–29°N and 122.5°–130.5°E, driving the variability of squid abundance. However, this influence varied with the intensity of each anomalous climatic event: the weak El Ni?o event occurred, the spawning ground was occupied by waters with enlarged SSA but with extremely low Chl a concentration, leading to low squid recruitment, the CPUE then decreased; the moderate intensity of El Ni?o event resulted in shrunk SSA but with high Chl a concentration on the spawning ground, the squid recruitment and CPUE increased; the moderate intensity of La Ni?a events yielded elevated SSA and high Chl a concentration on the spawning ground, the squid recruitment and CPUE dramatically increased. Our findings suggested that the ENSO events played crucial effects on the incubating and feeding conditions of the winter cohort of T. pacificus during the spawning season and ultimately affected its abundance.  相似文献   

6.
In this paper Cohort Analysis (VPA) with the data on catch in number by age and year is used to estimate independently fishing mortality, abundance and actual number of spawning stock of the Pacific herring in the Huanghai Sea. The results show that catch rate of the fishery is very high, and that the fishing mortality of the dominant age group aged 2-4 was 0.87-2.97 during the years 1971-1984. The size of year class has been decreased since 1982 although the variability for this species in the Huanghai Sea is frequent. This results in reducing the recruitment of the fishery, the abundance and the actual number of spawning stock. Therefore, an urgent management measure should be considered.The magnitude of several sources of errors in Cohort Analysis (VPA) are examined, and the precision of the estimates is mainly dependent on an accurate natural mortality.  相似文献   

7.
The spatial and temporal variability and size fractionation of chlorophyll a(Chl a) were investigated in the tropical and subtropical Pacific Ocean during four survey cruises from 2005 to 2009.The surface Chl a(S-Chl a) concentration ranged from 0.002 to 0.497 mg/m 3 and was obviously higher in the eastern Pacific than in the western and central Pacific.The vertical distribution of Chl a displayed a single peak pattern,and the maximum Chl a layer(MCL) was observed at a shallower depth in the eastern Pacific than in the western Pacific.All three size fractions of Chl a measurements in the surface water showed a similar distribution to total Chl a and were found in higher concentrations in the eastern Pacific than in the western and central Pacific.Picoplankton dominated the phytoplankton in the surveyed tropical and subtropical Pacific Ocean.Furthermore,pico-Chl a(0.2-2 μm) accounted for a larger percentage of the total Chl a in the central Pacific than it did in the western Pacific and eastern Pacific.In the western Pacific,there seemed to be a latitudinal variability in the phytoplankton community composition where small-sized phytoplankton(<2 μm) were more dominant in the tropical than in the subtropical western Pacific.The spatial and temporal variability and size fractionation of Chl a were controlled by hydrological and chemical characteristics and climate events,such as El Nin o and La Nin a.  相似文献   

8.
The West Pacific Ocean is considered as the provenance center of global marine life and has the highest species diversity of numerous marine taxa. The phytoplankton, as the primary producer at the base of the food chain,effects on climate change, fish resources as well as the entire ecosystem. However, there are few large-scale surveys covering several currents with different hydrographic characteristics. This study aimed to explore the relationships between the spatio-temporal variation in phytoplankton community structure and different water masses. A total of 630 water samples and 90 net samples of phytoplankton were collected at 45 stations in the Northwest Pacific Ocean(21.0°–42.0°N, 118.0°–156.0°E) during spring and summer 2017. A total of 281 phytoplankton taxa(5 μm) belonging to 61 genera were identified in the study area. The distribution pattern of the phytoplankton community differed significantly both spatially and temporally. The average abundances of phytoplankton in spring and summer were 797.07×10~2 cells/L and 84.94×10~2 cells/L, respectively. Whether in spring or summer, the maximum abundance always appeared in the northern transition region affected by the Oyashio Current, where nutrients were abundant and diatoms dominated the phytoplankton community;whereas the phytoplankton abundance was very low in the oligotrophic Kuroshio region, and the proportion of dinoflagellates in total abundance increased significantly. The horizontal distribution of phytoplankton abundance increased from low to high latitudes, which was consistent with the trend of nutrient distributions, but contrary to that of water temperature and salinity. In the northern area affected by the Oyashio Current, the phytoplankton abundance was mainly concentrated in the upper 30 m of water column, while the maximum abundance often occurred at depths of 50–75 m in the south-central area affected by the Kuroshio Current.Pearson correlation and redundancy analysis(RDA) showed that phytoplankton abundance was significant negatively correlated with temperature and salinity, but positively correlated with nutrient concentration. The phytoplankton community structure was mainly determined by nutrient availability, especially the N:P ratio.  相似文献   

9.
冬季黑潮延伸体海表温度对阿留申低压活动的双周期响应   总被引:1,自引:1,他引:0  
Based on our previous work, the winter sea surface temperature(SST) in the Kuroshio Extension(KE) region showed significant variability over the past century with periods of ~6 a between 1930 and 1950 and ~10 a between1980 and 2009. How the activity of the Aleutian Low(AL) induces this dual-period variability over the two different timespans is further investigated here. For the ~6 a periodicity during 1930–1950, negative wind stress curl(WSC)anomalies in the central subtropical Pacific associated with an intensified AL generate positive sea surface height(SSH) anomalies. When these wind-induced SSH anomalies propagate westwards to the east of Taiwan, China two years later, positive velocity anomalies appear around the Kuroshio to the east of Taiwan and then the mean advection via this current of velocity anomalies leads to a strengthened KE jet and thus an increase in the KE SST one year later. For the ~10 a periodicity during 1980–2009, a negative North Pacific Oscillation-like dipole takes2–3 a to develop into a significant positive North Pacific Oscillation-like dipole, and this process corresponds to the northward shift of the AL. Negative WSC anomalies associated with this AL activity in the central North Pacific are able to induce the positive SSH anomalies. These oceanic signals then propagate westward into the KE region after 2–3 a, favoring a northward shift of the KE jet, thus leading to the warming of the KE SST. The feedbacks of the KE SST anomaly on the AL forcing are both negative for these two periodicities. These results suggest that the dual-period KE SST variability can be generated by the two-way KE-SST-AL coupling.  相似文献   

10.
Understanding of the temporal variation of oceanic heat content(OHC) is of fundamental importance to the prediction of climate change and associated global meteorological phenomena. However, OHC characteristics in the Pacific and Indian oceans are not well understood. Based on in situ ocean temperature and salinity profiles mainly from the Argo program, we estimated the upper layer(0–750 m) OHC in the Indo-Pacific Ocean(40°S–40°N, 30°E–80°W). Spatial and temporal variability of OHC and its likely physical mechanisms are also analyzed. Climatic distributions of upper-layer OHC in the Indian and Pacific oceans have a similar saddle pattern in the subtropics, and the highest OHC value was in the northern Arabian Sea. However, OHC variabilities in the two oceans were different. OHC in the Pacific has an east-west see-saw pattern, which does not appear in the Indian Ocean. In the Indian Ocean, the largest change was around 10°S. The most interesting phenomenon is that, there was a long-term shift of OHC in the Indo-Pacific Ocean during 2001–2012. Such variation coincided with modulation of subsurface temperature/salinity. During 2001–2007, there was subsurface cooling(freshening)nearly the entire upper 400 m layer in the western Pacific and warming(salting) in the eastern Pacific. During2008–2012, the thermocline deepened in the western Pacific but shoaled in the east. In the Indian Ocean, there was only cooling(upper 150 m only) and freshening(almost the entire upper 400 m) during 2001–2007. The thermocline deepened during 2008–2012 in the Indian Ocean. Such change appeared from the equator to off the equator and even to the subtropics(about 20°N/S) in the two oceans. This long-term change of subsurface temperature/salinity may have been caused by change of the wind field over the two oceans during 2001–2012, in turn modifying OHC.  相似文献   

11.
高雪  陈新军  余为 《海洋学报》2017,39(6):55-61
柔鱼(Ommastrephes bartramii)是西北太平洋重要的经济头足类之一,科学预测柔鱼资源丰度有利于其合理的开发和利用。研究结合1998-2008年北太平洋柔鱼生产统计数据和产卵场环境及其气候因子,使用灰色关联分析和灰色预测建模的方法,对产卵期内(1-4月)影响柔鱼冬春生群体资源丰度(CPUE)的产卵场环境以及气候指标进行分析,并建立柔鱼冬春生群体资源丰度的预报模型。结果表明,产卵期内影响柔鱼冬春生群体资源丰度的因子依次是:3月份产卵场平均海表面温度SST(average sea surface temperature)、1月份太平洋年代际震荡指数PDO(Pacific Decadal Oscillatio index),4月份Niño3.4指标和4月份平均叶绿素浓度Chl a(average chlorophyll a concentration)。灰色预报模型分析表明,基于3月份SST、1月份PDO和4月份Chl a的GM(1,4)模型有着较好的预测效果,其预测准确率在80%以上,可用于西北太平洋柔鱼冬春群体资源丰度的预测。  相似文献   

12.
余为  陈新军 《海洋学报》2017,39(11):97-105
光合有效辐射(PAR)是海洋初级生产力的重要驱动因素之一,因此对海洋鱼类的资源丰度和空间分布产生潜在影响。本文根据2006-2015年1-12月中国鱿钓科学技术组提供的秘鲁外海茎柔鱼捕捞数据和光合有效辐射卫星遥感数据,以单位捕捞努力量渔获量(CPUE)表征资源丰度,以CPUE的纬度重心表征渔场空间分布,评估了东南太平洋秘鲁海域光合有效辐射对茎柔鱼资源变动的影响。结果发现,茎柔鱼渔场的产量、捕捞努力量、CPUE和PAR呈现明显的月间变化,其中CPUE和PAR月间变化规律表现为1-6月降低,7-12月增加的趋势。相关分析法表明,CPUE与PAR呈正相关关系,7月和8月相关性显著,而其余月份相关性不显著。依据频率分布法估算了各月适宜和最适PAR范围,各月最适PAR范围占渔场总面积比例与CPUE呈显著正相关关系,推测茎柔鱼资源丰度可能由各月适宜PAR面积大小决定;同时,最适PAR纬度与CPUE纬度重心呈显著正相关,说明茎柔鱼渔场的空间分布受最适PAR纬度的显著影响。此外,拉尼娜年份茎柔鱼适宜PAR面积要显著高于厄尔尼诺年份。研究表明,茎柔鱼资源丰度和空间分布受光合有效辐射的显著影响,其调控作用在不同气候条件下呈现不同的变化规律。  相似文献   

13.
茎柔鱼主要分布于东太平洋,是我国鱿钓渔船的主要捕捞对象,气候变化对其栖息地有较大影响。本研究依据1950?2015年海表温度(SST)、海表高度距平(SSHA)以及尼诺指数(Ni?o3.4指数),计算秘鲁外海茎柔鱼栖息地适宜性指数(HSI),分析在厄尔尼诺(El Ni?o)、正常气候和拉尼娜(La Ni?a)条件下适宜栖息地的时空变动。分析表明,海表温度距平(SSTA)和SSHA与Ni?o3.4指数的变化趋势基本相同,Ni?o3.4指数与SSTA和SSHA均呈显著正相关,但与HSI值呈显著负相关。依据气候事件的定义,将研究年份划分为El Ni?o年,正常年和La Ni?a年。研究发现,在El Ni?o年,茎柔鱼渔场水温变暖,海面高度上升,适宜的SST和SSHA范围缩小,导致适宜的栖息地面积范围缩减;而在正常气候和La Ni?a年份,茎柔鱼渔场水温变冷,海面高度下降,适宜的SST和SSHA范围增大,因此适宜的栖息地面积范围增加。此外,Ni?o3.4指数和茎柔鱼渔场HSI纬度重心呈显著正相关,在El Ni?o事件下适宜的栖息地纬度重心向南偏移。研究认为,不同ENSO事件下茎柔鱼渔场环境变化显著,进而影响茎柔鱼适宜的栖息地范围及其空间分布。  相似文献   

14.
印度洋鲣鱼围网资源渔场时空变化及其与ENSO的关系   总被引:1,自引:0,他引:1       下载免费PDF全文
鲣鱼是印度洋重要的金枪鱼种类之一,其资源丰度与海洋环境关系密切。本研究根据1980-2010年印度洋鲣鱼围网生产统计数据以及海洋环境与厄尔尼诺-南方涛动(ENSO)指数等,对印度洋鲣鱼围网资源渔场时空分布,以及厄尔尼诺年和拉尼娜年等不同尺度气候条件下鲣鱼资源渔场时空变动及其与海洋环境因子的关系进行分析。研究结果表明,1980-2010年印度洋鲣鱼围网渔获量基本保持不断增加的趋势,但CUPE值变化幅度较大,最低仅为0.68 t/d(1997年),最高达到1.58 t/d(2002年)。同时鲣鱼资源丰度(CPUE)与Ni?o3.4区指数存在显著的负相关关系,即厄尔尼诺年,鲣鱼CPUE 随之下降,拉尼娜年,CPUE 随之上升。ENSO现象对鲣鱼渔场时空分布也有显著影响,厄尔尼诺发生时,鲣鱼围网作业渔场重心会向东、向北移动,而拉尼娜年则向西、向南移动。  相似文献   

15.
不同气候模态下西北太平洋秋刀鱼资源丰度预测模型建立   总被引:2,自引:0,他引:2  
秋刀鱼(Cololabis saira)资源对海洋环境因素极为敏感,不同气候模态可能对秋刀鱼资源丰度产生不同的影响。根据1990-2014年西北太平洋日本的秋刀鱼渔业中单位捕捞努力量渔获量(CPUE,以此作为资源丰度),以及相应产卵场、索饵场的海表温(SST)遥感数据,探讨太平洋年际震荡(PDO)指数冷、暖年下,秋刀鱼资源丰度CPUE变化与产卵场、索饵场SST的关系,并分别建立资源丰度的预测模型。研究表明,PDO冷年索饵场4月SST与年CPUE显著相关(P<0.05),PDO暖年索饵场11月的SST与年标准化CPUE显著相关(P<0.05)。PDO冷、暖年的秋刀鱼资源丰度的预测模型中,CPUE均与索饵场11月的SST、索饵场4月SST呈现正相关的关系,统计学上为显著相关(P<0.05)。PDO冷年(2012年)和PDO暖年(2014年)的CPUE预测值与实际值相对误差分别为14.03%、-16.26%,具有较好的拟合效果。研究认为,不同气候模态下,可用于秋刀鱼资源丰度预测的环境因子不同,上述建立资源丰度模型可用于业务化运行。  相似文献   

16.
余为  陈新军  易倩 《海洋学报》2016,38(2):64-72
海洋初级生产力在海洋生态中扮演重要角色,其变化影响了海洋渔业的潜在产量。本文根据2004-2013年中国鱿钓组提供的西北太平洋柔鱼(Ommastrephes bartramii)捕捞数据和海洋遥感净初级生产力数据,研究了柔鱼冬春生西部群体资源量变动与净初级生产力的关系。结果发现,柔鱼渔场范围内净初级生产力在经度方向上呈明显的季节性变化,冬春季低,夏秋季高。捕捞月份7-11月对应的适宜净初级生产力范围分别为500~700 mg/(m2·d)(以碳计),500~800 mg/(m2·d),500~1000 mg/(m2·d),500~800 mg/(m2·d)和300~500 mg/(m2·d),最适净初级生产力分别为700 mg/(m2·d),600 mg/(m2·d),700 mg/(m2·d),600 mg/(m2·d)和400 mg/(m2·d)。7-11各月最适净初级生产力平均纬度与捕捞努力量纬度重心呈显著正相关关系(P<0.05),说明了捕捞努力量位置在渔场中不是随机分布,可能受最适净初级生产力的纬度分布的影响。柔鱼年间资源丰度与各年3月份净初级生产力以及7-11月份平均净初级生产力大小显著正相关(P<0.05)。推测每年柔鱼资源量大小可能是由3月份产卵场海域和7-11月捕捞月份渔场净初级生产力水平交互作用的结果。研究表明,异常环境条件(厄尔尼诺和拉尼娜事件)对柔鱼产卵场和渔场的净初级生产力具有显著影响,但调控机制不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号