首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Solitary wave evolution over a shelf including porous damping is investigated using Volume-Averaged Reynolds Averaged Navier–Stokes equations. Porous media induced damping is determined based on empirical formulations for relevant parameters, and numerical results are compared with experimental information available in the literature. The aim of this work is to investigate the effect of wave damping on soliton disintegration and evolution along the step for both breaking and non-breaking solitary waves. The influence of several parameters such as geometrical configuration (step height and still water level), porous media properties (porosity and nominal diameter) or solitary wave characteristics (wave height) is analyzed. Numerical simulations show the porous bed induced wave damping is able to modify wave evolution along the step. Step height is observed as a relevant parameter to influence wave evolution. Depth ratio upstream and downstream of the edge appears to be the more relevant parameter in the transmission and reflection coefficients than porosity or the ratio of wave height–water depth. Porous step also modifies the fission and the solitary wave disintegration process although the number of solitons is observed to be the same in both porous and impermeable steps. In the absence of breaking, porous bed triggers a faster fission of the incident wave into a second and a third soliton, and the leading and the second soliton reduces their amplitude while propagating. This decrement is observed to increase with porosity. Moreover, the second soliton is released before on an impermeable step. Breaking process is observed to dominate over the wave dissipation at the porous bottom. Fission is first produced on a porous bed revealing a clear influence of the bottom characteristics on the soliton generation. The amplitude of the second and third solitons is very similar in both impermeable and porous steps but they evolved differently due to the effect of bed damping.  相似文献   

2.
The purpose of this research work is to study the effect of specific surface s, the fluid–solid contact surface per volume unit, on the wave energy dissipation by porous structures consisting in dense arrays of emergent vertical cylinders. Experiments have been carried out in a 10 m long wave flume. Three cylinder diameters D are considered in order to study the effects of the specific surface while keeping the porosity constant. In a first series, the length of the porous zone is kept constant for the three cylinder diameters tested. The measurements, which include various wave steepness conditions, demonstrate the role of specific surface s on both wave attenuation and interference processes. The larger the specific surface is, the stronger the wave damping is. Damping is found to be almost proportional to 1/D when laminar, turbulent and inertial effects are of same order. Results are compared to numerical calculations based on either a constant rate of wave damping within the porous medium per unit wavelength or a quadratic damping developed using a force expression based on the work of [26]. This latter model, calibrated with drag and inertia coefficients, shows a good agreement with measurements. In a second series, both porous length and water depth are kept proportional to the cylinder diameter for the three diameters. Scale effects are then discussed and underline the importance of the flow regime within the porous medium.  相似文献   

3.
《Coastal Engineering》2006,53(10):845-855
This paper presents a study of wave damping over porous seabeds by using a two-dimensional numerical model. In this model, the flow outside of porous media is described by the Reynolds Averaged Navier–Stokes equations. The spatially averaged Navier–Stokes equations, in which the presence of porous media is considered by including additional inertia and nonlinear friction forces, is derived and implemented for the porous flow. Unlike the earlier models, the present model explicitly represents the flow resistance dependency on Reynolds number in order to cover wider ranges of porous flows. The numerical model is validated against available theories and experimental data. The comparison between the numerical results and the theoretical results indicates that the omission or linearization of the nonlinear resistance terms in porous flow models, which is the common practice in most of analytical models, can lead to significant errors in estimating wave damping rate. The present numerical model is used to simulate nonlinear wave interaction with porous seabeds and it is found that the numerical results compare well with the experimental data for different wave nonlinearity. The additional numerical tests are also conducted to study the effects of wavelength, seabed thickness and Reynolds number on wave damping.  相似文献   

4.
5.
This paper proposes a new wave absorber made of flexible net structures. To test the efficiency of the proposed water absorber, experiments were done on wave absorbers of various lengths of and the thicknesses of the wave absorber. To perform a numerical modeling of the proposed wave absorber, damping terms were introduced in linearized free-surface boundary conditions. The length and the thickness of the wave absorber were modeled by the length and the coefficient of the damping zones. The boundary element method was adopted to solve the system. Series of experiments were performed to obtain the data for the coefficients of the damping term needed in numerical calculations. The predicted wave heights agreed very closely with those of experiments when the lengths of the incoming waves were within the order of the length of the wave absorber.  相似文献   

6.
Simplified analytical solutions are presented to model the interaction of linear waves with absorbing-type caisson breakwaters, which possess one, or two, perforated or slotted front faces which result in one, or two, interior fluid regions (chambers). The perforated/slotted surfaces are idealized as thin porous plates. Energy dissipation in the interior fluid region(s) inside the breakwater is modelled through a damping function. Under the assumption of potential flow and linear wave theory a boundary-value problem may then be formulated to describe wave interaction with the idealized structure. A solution to this simplified problem may be obtained by an eigenfunction expansion technique and an explicit analytical expression may be obtained for the reflected wave height. Using the experimental work of previous authors, damping coefficients are determined for both single and double chamber absorbing-type caisson breakwaters. Based on the damping for a single perforated-wall breakwater, a methodology is proposed to enable the estimation of the damping coefficients for a breakwater with two chambers. The theoretical predictions of the reflection coefficients for the two-chamber structures using the present model are compared with those obtained from laboratory experiments by other authors. It is found that the inclusion of the damping in the interior fluid region gives rise to improved agreement between theory and experiment.  相似文献   

7.
全球海岸生态系统正遭受气候变化及人类活动带来的威胁, 本文基于沙坝-潟湖系统海岸典型剖面形态, 通过设计实施动床波浪水槽试验, 定量研究了侵蚀浪条件下沉水植被对该系统海岸冲淤的影响。结果表明: 沉水植被明显削弱了沙坝前坡波浪破碎区前缘的波高增大幅度, 并使坝后波高衰减; 植被作用使波浪反射和透射系数减小、耗散系数增大; 侵蚀浪作用下, 沙坝坝顶冲刷较明显, 潟湖内呈淤积趋势, 海岸前丘受波浪冲刷呈陡坎形态。植被影响下沙坝和前丘区域最大侵蚀厚度均减小; 植被可减少沙坝净侵蚀量、潟湖内淤积量及离岸输沙量, 对海岸前丘有较好的保护作用。  相似文献   

8.
Propagation of a solitary wave over rigid porous beds   总被引:1,自引:0,他引:1  
The unsteady two-dimensional Navier–Stokes equations and Navier–Stokes type model equations for porous flows were solved numerically to simulate the propagation of a solitary wave over porous beds. The free surface boundary conditions and the interfacial boundary conditions between the water region and the porous bed are in complete form. The incoming waves were generated using a piston type wavemaker set up in the computational domain. Accuracy of the numerical model was verified by comparing the numerical results with the theoretical solutions. The main characteristics of the flow fields in both the water region and the porous bed were discussed by specifying the velocity fields. Behaviors of boundary layer flows in both fluid and porous bed regions were also revealed. Effects of different parameters on the wave height attenuation were studied and discussed. The results of this numerical model indicate that for the investigated incident wave as the ratio of the porous bed depth to the fluid depth exceeds 10, any further increase of the porous bed depth has no effect on wave height attenuation.  相似文献   

9.
何飞  陈杰  蒋昌波  赵静 《海洋学报》2018,40(5):24-36
海草所形成的植物消波体系能有效防止岸线的侵蚀。利用Sánchez-González等的实验数据分析了波浪非线性对海草消波特性的影响。研究结果表明,相对水深和波陡对海草床的波能衰减系数影响依赖于海草淹没度。相对波高一定时,拖曳力系数随相对水深的增大而增大。对给定的相对水深,拖曳力系数随波陡的增大而减小。波浪非线性对于规则波和非规则波海草消波特性的影响并不一致。用无量纲参数(邱卡数、雷诺数、厄塞尔数)表达拖曳力系数的效果取决于拖曳力系数与无量纲参数的关系中是否充分考虑波浪非线性对拖曳力系数的影响。  相似文献   

10.
Abstract

The problem of forced vibration of a slightly inelastic porous bed by water waves is treated analytically on the basis of a linearized expression of the nonlinear damping term for the grain‐to‐grain friction in bed soils and the linear theory by Biot (1962a [Jour. Appl. Physics, 33:1482–1498]) on the elastic wave propagation in porous media. A dispersion relation of water waves is obtained as a function of wave frequency, water depth, permeability, Poisson's ratio, rigidity, and specific loss of bed soil. Three types of elastic waves are induced in a bed by water waves: a shear wave and a compressional wave in the skeletal frame of soil, and a compressional wave in the pore fluid. The compressional wave, due to the motion of the pore fluid relative to the skeletal frame of soil, is highly damped by the viscosity of pore fluid and only a short range effect near the boundaries of discontinuity, such as a sea‐seabed interface. The seabed response to water waves is characterized by the two Mach numbers, i.e., the ratio of water‐wave speed to shear‐wave speed in soil and the ratio of water‐wave speed to compressional‐wave speed in soil. Most of the water‐wave propagation problems fall into the subsonic flow condition, where elastic waves in the bed travel faster than water waves.

For sandy beds, generally the speeds of compressional and shear waves are much higher than the phase velocity of the water wave. For this case, the solution of the Coulomb‐damped poroelastic bed response presented in this paper approaches the solution of the massless poroelastic bed response in Yamamoto et al. (1978 [Jour. Fluid Mech., 87(1): 193–206]). The damping of water waves due to internal grain‐to‐grain friction is equally or more significant than the damping due to percolation in sand beds.

For clay beds, the speed of the shear wave in soil becomes low and comparable to the phase speed of the water wave. The bed motion for this case is considerably amplified due to the near‐resonance vibration of shear mode of bed vibration. The water wavelength on a clay bed is significantly shortened compared to the water wavelength over a rigid bed. The water wave damping due to internal grain‐to‐grain friction in soil becomes much larger compared to the water wave damping due to percolation in clay beds. Long water waves over a soft clayey bed attenuate within several wavelengths of travel distance.  相似文献   

11.
《Coastal Engineering》2004,51(3):223-236
A computational model is developed to investigate the wave damping characteristics of a periodic array of porous bars. The transmission and reflection coefficients as well as the wave energy dissipation are evaluated relating to the physical properties and geometric factors of bars. It is shown that the porosity, number, width and height of bars all play important roles in the wave damping characteristics, compared to other factors such as the intrinsic permeability. It is observed that like impermeable bars, permeable bars display Bragg phenomenon. However, Bragg reflection produced by permeable bars is smaller than that by impermeable bars. Permeable bars reflect smaller waves, transmit smaller waves and dissipate more wave energy. It is indicated that if the porosity increases, both the reflection and transmission coefficients decrease and more wave energy is dissipated. Further, it is found that the porosity controls the magnitude, but not the oscillation frequency of the reflection coefficient, which depends only on the number of bars.  相似文献   

12.
An experimental study, conducted in the large wave flume of CIEM in Barcelona, is presented to evaluate the effects of Posidonia oceanica meadows on the wave height damping and on the wave induced velocities. The experiments were performed for irregular waves from intermediate to shallow waters with the dispersion parameter h/λ ranging from 0.09 to 0.29. Various configurations of the artificial P. oceanica meadow were tested for two stem density patterns (360 and 180 stems/m2) and for plant's height ranging from 1/3 to 1/2 of the water depth.The results for wave height attenuation are in good agreement with the analytical expressions found in literature, based on the assumption that the energy loss over the vegetated field is due to the drag forces. Based on this hypothesis, an empirical relationship for the drag coefficient related to the Reynolds number, Re, is proposed. The Reynolds number, calculated using the artificial P. oceanica leaf width as the length scale and the maximum orbital velocity over the meadow edge as the characteristic velocity scale, ranges from 1000 to 3500 and the drag coefficient Cd ranges from 0.75 to 2.0.The calculated wave heights, using the analytical expression from literature and the proposed relationship for the estimation of Cd, are in satisfactory agreement with those measured. Wave orbital velocities are shown to be significantly attenuated inside the meadow and just above the flume bed as indicated by the calculation of an attenuation parameter. Near the meadow edge, energy transfer is found in spectral wave velocities from the longer to the shorter wave period components. From the analysis it is shown that the submerged vegetation attenuates mostly longer waves.  相似文献   

13.
沿海盐沼潮滩可以有效降低波浪高度,耗散波浪能量,在海岸防护和沿海城市安全中扮演着重要角色。以长江河口崇明岛南侧盐沼潮滩为对象,基于不同潮间带实测波浪变化数据,采用波能衰减模型对波浪横向沿潮滩衰减状态进行定量分析,由此探讨波浪衰减主控要素。结果表明:波浪沿盐沼潮滩向岸传播过程中,波高以及波能大幅下降,其中光滩—芦苇前部区域波能平均下降19%,芦苇区域波能平均下降71%,有植被覆盖区域对波浪的衰减效应更为显著。同时,水深、入射波高及阻力是影响盐沼潮滩波浪衰减的主要因素,波浪衰减强度随水深增大而减小,入射波高增加以及阻力的增大而增强。  相似文献   

14.
Experiments investigating the attenuation and dispersion of surface waves in a variety of ice covers are performed using a refrigerated wave flume. The ice conditions tested in the experiments cover naturally occurring combinations of continuous, fragmented, pancake and grease ice. Attenuation rates are shown to be a function of ice thickness, wave frequency, and the general rigidity of the ice cover. Dispersion changes were minor except for large wavelength increases when continuous covers were tested. Results are verified and compared with existing literature to show the extended range of investigation in terms of incident wave frequency and ice conditions.  相似文献   

15.
Coastal wetlands such as salt marshes and mangroves provide valuable ecosystem services including coastal protection. Many studies have assessed the influence of plant traits and wave conditions on vegetation-induced wave dissipation, whereas the effect of tidal currents is often ignored. To our knowledge, only two studies investigated wave dissipation by vegetation with the presence of following currents (current velocity is in the same direction as wave propagation) (Li and Yan, 2007; Paul et al., 2012). However, based on independent experiments, they have drawn contradictive conclusions whether steady currents increase or decrease wave attenuation. We show in this paper that this inconsistency may be caused by a difference in ratio of imposed current velocity to amplitude of the horizontal wave orbital velocity. We found that following currents can either increase or decrease wave dissipation depending on the velocity ratio, which explains the seeming inconsistency in the two previous studies. Wave dissipation in plant canopies is closely related to vegetation drag coefficients. We apply a new approach to obtain the drag coefficients. This new method eliminates the potential errors that are often introduced by the commonly used method. More importantly, it is capable of obtaining the vegetation drag coefficient in combined current–wave flows, which is not possible for the commonly used calibration method. Based on laboratory data, we propose an empirical relation between drag coefficient and Reynolds number, which can be useful for numerical modeling. The characteristics of drag coefficient variation and in-canopy velocity dynamics are incorporated into an analytical model to help understand the effect of following currents on vegetation-induced wave dissipation.  相似文献   

16.
In this note we investigated the effects of a thin visco-elastic mud layer on wave propagation. Within the framework of linear water-wave theory, analytical solutions are obtained for damping rate, dispersion relation between wave frequency and wave number, and velocity components in the water column and mud layer. The wave attenuation rate reaches a maximum value when the mud layer thickness is about the same as the mud boundary layer thickness. Heavier mud has a weaker effect on the wave damping. However, the wave attenuation rate does not always decrease as the elastic shear modulus increases. In the range of small values for elastic shear modulus, the wave attenuation can be amplified quite significantly. The current solutions are compared with experimental data with different wave conditions and mud properties. In general, good agreements are observed.  相似文献   

17.
The hydroelastic responses of a submerged horizontal solid/porous plate attached at the front of a very large rectangular floating structure(VLFS) under wave action has been investigated in the context of linear water wave theory. Darcy's law is adopted to represent energy dissipation in pores. It is assumed that the porous plates are made of material with very fine pores so that the normal velocity across the perforated porous is linearly associated with the pressure drop. In the analytic method, the eigenfunction expansion-matching method(EEMM) for multiple domains is applied to solve the hydrodynamic problem and the elastic equation of motion is solved by the modal expansion method. The performance of the proposed submerged horizontal solid/porous plate can be significantly enhanced by selecting optimal design parameters, such as plate length, horizontal position, submerged depth and porosity. It is concluded that good damping effect can be achieved through installation of solid and porous plate.Porous plate has better damping effect at low frequencies, while solid plate has better damping effect at high frequencies. The optimal ratio of plate length to water depth is 0.25-0.375, and the optimal ratio of submerged depth to water depth is 0.09-0.181.  相似文献   

18.
在理论分析的基础上利用根、茎、叶均可量化的植物模型,开展波浪水槽实验。通过改变实验水深、入射波高、植物分布密度等因素,研究不规则波在植物群传播时沿程波高衰减特性,利用快速傅里叶变换对不规则波频谱变化情况进行分析。结果表明,各植物模型消波效果较好,但很少出现植物消波的边界效应,不规则波沿植物群的波高变化情况多数时与Mendez理论曲线不一致,植物群各部分的波能衰减情况并无固定的变化规律。此外,波能衰减集中在谱峰频率处,且入射波高越大,透射波与入射波之间的谱峰值差值越大,但透射波的频谱宽度与入射波相比无明显变化。本研究可为采用近岸植物消波护岸提供一定的理论依据。  相似文献   

19.
The problem of wave propagation and wave damping in a channel with side porous mattresses of arbitrary shape protruding from the walls is studied. The solution was achieved by applying 3-D boundary element method and was employed to study wave field in the channel and to analyze the effect of the geometry of the mattresses and physical and hydraulic properties of porous material on wave damping. The results show that wave damping in the channel strongly depends on wave parameters, especially, on the wave number. Wave reflection and transmission decrease with increasing the wave number. The results also show that the wave field in the channel strongly depends on the geometry of the mattresses as well as on physical and hydraulic properties of porous material used to build these wave dampers. The geometry of the mattresses and physical and hydraulic properties of porous material have a moderate effect on wave reflection and a significant effect on wave transmission. The results show that wave transmission down the channel decreases with increasing the length and thickness of the mattresses. Moreover, wave transmission decreases with increasing the porosity and damping properties of porous media used to build the mattresses. The analysis shows that porous mattresses protruding from the channel walls are very efficient in damping water waves propagating down the channel and may be built in channels to reduce high waves and achieve desired wave conditions. Theoretical results are in reasonable agreement with experimental data.  相似文献   

20.
This paper presents the application of the Improved Meshless Local Petrov Galerkin method with Rankine source (Sriram and Ma, 2012) Sriram and Ma (2012) for wave interaction with porous structure model. The mathematical model is based on a unified governing equation that incorporates both pure fluid and porous region. The porous flow model is based on the empirical resistance coefficients. The interface between the pure fluid and porous region is numerically treated using background nodes having the porosity information and interpolated over the particle using simplified finite difference interpolation method. The model is validated using the available experimental results for wave damping over the permeable bed. The developed model is used to analyse the different shape of the seawall such as flaring shaped seawall, recurve wall and vertical wall. Then the validated model is used for analysing the overtopping amount due to the effect of porous layer in-front of the different sea wall profile. Numerical expression for overtopping amount has been provided for the different configurations from the numerical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号