首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Sea level variations from 1974 through 1976 at 9 stations on the south coast of Japan (from west to east, Aburatsu, Tosa-shimizu, Muroto-misaki, Kushimoto, Uragami, Owase, Toba, Maisaka and Omaezaki) were analysed in relation to the large meander in the Kuroshio. From May to July in 1975, a small maximum in sea level variation was observed at every station west of Cape Shionomisaki from Aburatsu to Kushimoto. It propagated eastward along with the eastward propagation of a small meander in the Kuroshio until it reached Kushimoto, when the sea levels at Uragami and Owase started to rise sharply. This remarkable rise appeared at all stations in August when a large meander in the Kuroshio was established. The mean sea level at the stations east of Cape Shionomisaki from Uragami to Omaezaki rose by about 10 cm. The difference in sea level variations between the regions east and west of Cape Shionomisaki, which had been present before the rise, disappeared. A similar characteristic of sea level variation was also found in the generation stage of the large meander in 1959. The sea level variations along the south coast of Japan indicate that, prior to the generation of the large meander, the small meander in the Kuroshio was generated southeast of Kyushu and propagated eastward and that, just when this meander reached off Cape Shionomisaki, a large scale oceanic event covering over the whole region of the south coast of Japan occurred. This large scale event seems to be one of the necessary conditions for the generation of the large meander in the Kuroshio off Enshû-nada.  相似文献   

2.
The generation and propagation mechanisms of a Kyucho and a bottom intrusion in the Bungo Channel, Japan, have been studied numerically using the hydrostatic primitive equations by assuming density stratification during summer. The experiments are designed to generate a Kuroshio small meander in Hyuga-Nada, which acts as a trigger for these disturbances. After the current speed of the Kuroshio is changed, a small meander is generated. At the head of the small meander, warm Kuroshio water is engulfed, and encounters the southwest coast of Shikoku. However, convergence of heat flux on the bump off Cape Ashizuri suppresses the generation of a warm disturbance, if the current speed is large. As the cold eddy associated with the small meander approaches Cape Ashizuri, the heat flux diverges on the bump. This heat source forces a warm disturbance, which intrudes along the east coast of the Bungo Channel as a baroclinic Kelvin wave (a Kyucho). After the cold eddy passes off Cape Ashizuri, the Kuroshio approaches the bump again. Strong convergence of heat flux then occurs on the bump, which forces a cold disturbance. This disturbance propagates as a topographic Rossby wave along the shelf break at the mouth of the channel. After the topographic wave reaches the west end of the shelf break, it intrudes along the bottom layer of the channel as a density current (a bottom intrusion). These results suggest that a Kyucho and a bottom intrusion are successive events associated with the propagation of the small meander.  相似文献   

3.
Abyssal currents along the northern periphery of the Shikoku Basin south of Japan were measured by current meters moored off Cape Daio-zaki, Cape Shiono-misaki and Cape Ashizuri-misaki and on the eastern foot of the northernmost part of the Kyushu-Palau Ridge. Total length of observation off Cape Shiono-misaki was about five years including the periods of the Kuroshio large meander and no meander. Analyses of current data show:
  1. Mean currents with a magnitude of 5–10 cm sec?1 were observed during the whole observation period at all of current meters which were set 400 m above the sea bottom that was deeper than 4,500 m. The mean current for each current meter was parallel to the local bottom contour arond each station and was toward a direction looking the Nankai Trough (a trough located along the northern end of the Shikoku Basin) to the left.
  2. At each station located above the shelf toe off Cape Daio-zaki and off Cape Shiono-misaki and on the foot of the Kyushu-Palau Ridge, the mean current increases with depth (a bottomward intensification of the mean current), and the vertical extent of the mean current is estimated to be about 2,000 m above the sea bottom.
  3. At a station located at 2,600 m depth on the continental slope off Cape Shiono-misaki, no bottom-ward intensification of currents was observed.
These results strongly suggest that a steady abyssal flow exists in the depths deeper than about 3,000 m along the northern and northwestern peripheries of the Shikoku Basin. Existence of the abyssal circulation system is also suggested, at least, in the north of the Shikoku Basin.  相似文献   

4.
Conditions for the formation of large meander (LM) of the Kuroshio are inferred from observational data, mainly obtained in the 1990s. Propagation of the small meander of the Kuroshio from south of Kyushu to Cape Shiono-misaki is a prerequisite for LM formation, and three more conditions must be satisfied. (1) The cold eddy carried by small meander interacts with the cold eddy in Enshu-nada east of the cape. During and just after the propagation of small meander, (2) the Kuroshio axis in the Tokara Strait maintains the northern position and small curvature, and (3) current velocity of the Kuroshio is not quite small. If the first condition is not satisfied, the Kuroshio path changes little. If the first condition is satisfied, but the second or third one is not, the Kuroshio transforms to the offshore non-large-meander path, not the LM path. All three conditions must be satisfied to form the large meander. For continuance of the large meander, the Kuroshio must maintain the small curvature of current axis in the Tokara Strait and a medium or large range of velocity and transport. These conditions for formation and continuance may be necessary for the large meander to occur. Moreover, effects of bottom topography on position and structure of the Kuroshio are described. Due to topography, the Kuroshio changes horizontal curvature and vertical inclination of current axis in the Tokara Strait, and is confined into either of two passages over the Izu Ridge at mid-depth. The former contributes to the second condition for the LM formation.  相似文献   

5.
The occurrence of the small meander of the Kuroshio, generated south of Kyushu and propagating eastward, was examined using sea level data collected during 1961–1995 along the south coast of Japan. Intra-annual variation of the sea level was expanded by the frequency domain empirical orthogonal function (FDEOF) modes, and it was found that the second and third modes are useful for monitoring the generation and propagation of the small meander. The third FDEOF for periods of 10–100 days has a phase reversal between Hosojima and Tosa-shimizu with significant amplitude west of Kushimoto, and the amplitude of its time coefficient is large during the non-large-meander (NLM) period and has a significant peak when the small meander exists southeast of Kyushu. The second FDEOF for periods of 20–80 days has a phase reversal between Kushimoto and Uragami, and the amplitude of its time coefficient is large when the small meander propagates to the south of Shikoku. The third FDEOF mode allowed us to conclude that the small meander occurred 42 times from July 1961 to May 1995, most of them (38) occurring during the NLM periods. The second FDEOF mode permits the conclusion that half of the 38 small meanders reached south of Shikoku. Of these, five small meanders influenced transitions of the Kuroshio path from the nearshore NLM path; one caused the offshore NLM path and four brought about the large meander. About one-tenth of the total number of small meanders are related to the formation of the large meander.  相似文献   

6.
A high-resolution ocean model forced with an annually repeating atmosphere is used to examine variability of the Kuroshio, the western boundary current in the North Pacific Ocean. A large meander (LM) in the path of the Kuroshio south of Japan develops and disappears in a highly bimodal fashion on decadal timescales. The modeled meander is comparable in timing and spatial extent to an observed feature in the region. Various characteristics of the LM are examined, including relative vorticity, transport, and velocity shear. The many similarities between the model and observations indicate that the meander results from intrinsic oceanic variability, which is represented in this climatologically forced model. Each LM is preceded by a smaller “trigger” meander that originates at the south end of Kyushu, moves up the coast, and develops into the LM. However, there are also many meanders very similar in character to the trigger meander that do not develop into LMs. Formation of an LM only occurs when a deep anticyclone associated with the trigger meander forms near Koshu Seamount. Furthermore, the major axis of that deep anticyclone must be oriented away from the coast, rather than alongshore. In the specific case of interaction of a trigger meander with a deep anticyclone with major axis oriented away from the coastline, LM formation occurs.  相似文献   

7.
Deep currents measured by moored current meters over the shelf-slope off Cape Shiono-misaki, Kii Peninsula during the period from 28 April, 1981 to 4 May, 1982 are analyzed to determine characteristics of the deep current before and after the large meander of the Kuroshio formed. The observed deep currents show some different characteristics between the periods before and after the formation of the large meander of the Kuroshio,i.e.:
  1. The mean current direction over the shelf slope changed to westward after the meander was formed, though it was eastward at two offshore stations before the meander was formed.
  2. The eddy kinetic energy, \(ke((\overline {u'^2 } + \overline {\upsilon '^2 } )/2)\) became large at all stations after the meander formed.
  3. It appears that there were current variations in the period band shorter than 10 days which propagated offshore before the meander formed but inshore after the meander formed.
  4. After the meander formed, the current variations with a period of O(25 days) were amplified at two of the three stations. The current variations in this period band showed high coherence among the three stations.
Data from tidal stations showed that sea level variations with a period of O(30 days) were also amplified along the south coast of Japan after the meander was formed. But sea level variations were not coherent with current variations in this period band.  相似文献   

8.
The generation of small meanders of the Kuroshio south of Kyushu has been investigated using a high-resolution ocean general circulation model of the North Pacific Ocean. The small cyclonic meander develops in the region east of the Tokara Strait with a period of about one month, then propagates downstream along the Kuroshio path to the longitude of the Kii Peninsula, which is similar to the so-called trigger meanders for the formation of the large-meander of the Kuroshio south of Japan. It turns out that the generation of the small meander is a local phenomenon, strongly associated with anticyclonic eddies that propagate northeastward along the Kuroshio path in the East China Sea. The vorticity balance indicates that the accumulation of positive vorticity during the developing phase of the small meander occurs mainly from the balance between the stretching and the advection terms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The influences of mesoscale eddies on variations of the Kuroshio path south of Japan have been investigated using time series of the Kuroshio axis location and altimeter-derived sea surface height maps for a period of seven years from 1993 to 1999, when the Kuroshio followed its non-large meander path. It was found that both the cyclonic and anticyclonic eddies may interact with the Kuroshio and trigger short-term meanders of the Kuroshio path, although not all eddies that approached or collided with the Kuroshio formed meanders. An anticyclonic eddy that revolves clockwise in a region south of Shikoku and Cape Shionomisaki with a period of about 5–6 months was found to propagate westward along about 30°N and collide with the Kuroshio in the east of Kyushu or south of Shikoku. This collision sometimes triggers meanders which propagate over the whole region south of Japan. The eddy was advected downstream, generating a meander on the downstream side to the east of Cape Shionomisaki. After the eddy passed Cape Shionomisaki, it detached from the Kuroshio and started to move westward again. Sometimes the eddy merges with other anticyclonic eddies traveling from the east. Coalescence of cyclonic eddies, which are also generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region south of Japan, into the Kuroshio in the east of Kyushu, also triggers meanders which mainly propagate only in a region west of Cape Shionomisaki. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.

Since September 2017, the Kuroshio has taken a large-meander (LM) path in the region south of Japan. We examined characteristics of the 2017–present LM path in comparison with previous LM paths, using tide gauge, altimetric sea surface height, and bottom pressure data. The 2017–present LM path was formed from a path passing through a channel south of Hachijo-jima Island, while a typical LM path originated from a path through a channel north of Miyake-jima Island. The meander trough of this atypical path was found to be shifted far to the east and to vary on a timescale of months. These characteristics are different from those of a typical LM path but they are similar to those of the 1981–1984 LM path. Therefore, we identified two types of LM path; a stable and unstable LM paths. The 2017–present unstable type large meander has a zonal scale greater than that of the 2004–2005 stable type large meander and protrudes from the eastern boundary of the Shikoku Basin, i.e., Izu-Ogasawara Ridge. No significant bottom pressure depression was observed, associated with the formation of the 2017–present LM path, indicating that baroclinic instability was not important in the formation of this LM path. Due to no significant bottom steering, even during the 2017–present LM period, a mesoscale current path disturbance occurred southeast of Kyushu, propagated eastward, and amplified the offshore displacement of the Kuroshio.

  相似文献   

11.
The coastal sea level propagating westward along the south coast of Japan and the impact of the disturbance on the generation of the Kuroshio small meander have been examined. The propagation occurs in sea level variations for periods shorter than 10 days and is remarkable for periods of 4–6 days. Characteristics of the 4–6 day component have been studied using the extended empirical orthogonal function (EEOF). The first and second modes of EEOF are almost in-phase throughout the south coast of Japan. The higher four modes of EEOF are significantly excited when the Kuroshio takes the non-large-meander path, and propagate westward with phase speeds of 2.8 m s−1 (third and fourth modes) and 1.6 m s−1 (fifth and sixth modes) in the Kuroshio region west of Mera in the Boso Peninsula. The analysis shows that more than 70% of the small meanders generate in two months after a significant propagating disturbance reaches south of Kyushu when the velocity of the Kuroshio is high. This effect of coastal disturbance is examined by numerical experiments with a 2.5-layer model in which coastal disturbance is excited by vertical displacement of the upper interface. The result is that offshore displacement of the Kuroshio occurs southeast of Kyushu only in the case of significant upward displacement of the interface under the influence of a high Kuroshio velocity. The significant coastal disturbance, which is associated with upward displacement of the density interface, and a high Kuroshio velocity can therefore be important factors in generating small meanders.  相似文献   

12.
Current path records of the Kuroshio off southern Japan have been examined for the period 1960–1977. Together with previously published results (S.Yoshida, 1961;Shoji, 1972) this evidence indicates that all major changes in the path of the Kuroshio off Cape Shiono were preceded by the formation of a small trigger meander off Kyushu and its downstream propagation to Cape Shiono. The periods of occurrence of these trigger meanders, most of which decay without propagating downstream, are documented. Small meanders off Kyushu occur throughout the year, but all of those which triggered changes off Cape Shiono were initially generated in the period January–April.Contribution No. 4 of the Pacific International Research Association.  相似文献   

13.
利用美国国家环境预报中心发布的FNL资料、红外卫星云图资料和船测资料,对2016年10月17-19日某船舶在东南太平洋遭遇的一次温带气旋过程进行研究,以此为大洋航线上温带气旋预报保障能力提高积累经验。结果表明:(1)温带气旋A由绕极槽北伸切断发展而来,自西向东移动过程中在南太平洋大洋中部与另一气旋B合并加强对船舶航行造成影响;(2)气旋A初生阶段,大气低层旋转程度较强;成熟发展阶段在近地面、大气上层旋转程度较强;当气旋B初生发展时,气旋A中心附近自500 hPa以下为绝对涡度小值区,其上为绝对涡度大值区,绝对涡度垂直轴线向近B一侧倾斜;(3)槽后及气旋中心附近正涡度平流与槽前随高度增强的暖平流共同促使气旋发展。  相似文献   

14.
Surface temperature data obtained in and out of the bay all year round from March 1990 through February 1991, except from July through October 1990 were analyzed to investigate seasonal variability of theKyucho in Sukumo Bay, southwest of Shikoku, Japan. TheKyucho periodically occurs in the bay during both the warming period of March through June and the cooding period of November through February. The onset period of theKyucho is 8–15 days during the warming period and 4–14 days during the cooling period, giving an average of about 10 and 8 days, respectively. The position of the Kuroshio axis offshore in the south of Cape Ashizuri-misaki is a significant factor with theKyucho in the bay. Thermal infrared images taken by the NOAA-11 in the sea off east of Kyushu were also analyzed during the two observation periods. It is clearly found that a warm filament derived from the Kuroshio (KWF) advects northeast to Cape Ashizurimisaki along the Kuroshio, then encounters the southwest coast of Shikoku, followed by inducing theKyucho in the bay by the warm water intrusion. The alongshelf dimension of the KWFs is approximately 50–100 km, and the cross-shelf distance from the western edge of the KWFs to that of the body of the east Kuroshio is about 30–50 km. The KWF sometimes closely approaches to the east coast of Kyushu. An onshore meander of the Kuroshio front around Cape Toimisaki might grow into a KWF in the sea off east of Kyushu.  相似文献   

15.
本文利用日本气象传真、云图和NCEP/NCAR再分析资料,分析了0724号台风"海贝思"异常路径的成因,发现其逆时针打转路径的形成主要与高低空不同方向的引导作用和双台风效应有关,南支槽东移并与西风槽合并是其东退的主要原因.从云图上,能明显的判别出台风周围大的环境场,从而可以利用云图预报台风的发展趋势.  相似文献   

16.
The characteristics of the Kuroshio axis south of Kyushu, which meanders almost sinusoidally, are clarified in relation to the large meander of the Kuroshio by analyzing water temperature data during 1961–95 and sea level during 1984–95. The shape of the Kuroshio axis south of Kyushu is classified into three categories of small, medium, and large amplitude of meander. The small amplitude category occupies more than a half of the large-meander (LM) period, while the medium amplitude category takes up more than a half of the non-large-meander (NLM) period. Therefore, the amplitude and, in turn, the curvature of the Kuroshio axis is smaller on average during the LM period than the NLM period. The mean Kuroshio axis during the LM period is located farther north at every longitude south of Kyushu than during the NLM period, with a slight difference west of the Tokara Islands and a large difference to the east. A northward shift of the Kuroshio axis in particular east of the Tokara Islands induces small amplitude and curvature of the meandering shape during the LM period. During the NLM period, the meandering shape and position south of Kyushu change little with Kuroshio volume transport. In the LM formation stage, the variation of the Kuroshio axis is small west of the Tokara Islands but large to the east due to a small meander of the Kuroshio. In the LM decay stage, the Kuroshio meanders greatly south of Kyushu and is located stably near the coast southeast of Kyushu. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Index and Composites of the Kuroshio Meander South of Japan   总被引:1,自引:0,他引:1  
Using the merged NOAA National Oceanographic Data Center (NODC)/Japan Oceanographic Data Center (JODC)/Marine Information Research Center (MIRC) historical hydrographic dataset, a new Kuroshio large meander (LM) index is introduced. This index helps to distinguish between the LM events and other types of Kuroshio Current (KC) variability south of Japan. Observations, re-systematized according to the index, provide composite patterns of typical formation and decay of the LM. The patterns reveal a remarkable similarity between individual LMs and support the deterministic rather than the stochastic model of LM evolution on a time-scale of one year. A “trigger” meander (TM) occurs on composite maps six months prior to the LM formation as a 1° latitude southward shift of the KC axis south of Kyushu. When propagating eastward along the coast of Japan, TM gradually increases in area. In principal the emergence of LM takes only one month. East of TM and LM a remarkable onshore shift of the KC is noticed, supplying the coastal region with warm water. Other warm anomalies are found on the warm side of KC next to the propagating TM and in the larger warm eddy area southeast of Kyushu. Different LMs survive for different times and decay in some months after KC “jumps” across the Izu Ridge. Changes of water properties on isopycnals in the interior of LM can be roughly described by two-layer kinematics with an interface at σθ = 27 which suggests a strong inflow of deep Kuroshio waters into the LM core during the formation of the latter. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
A steady model of typical non-large-meander paths of the Kuroshio Current   总被引:2,自引:0,他引:2  
Conditions south of Cape Shiono-misaki for the nearshore and offshore non-large-meander (NLM) paths of the Kuroshio Current are studied using a two-layer reduced gravity model. A steady and non-diffusive state is assumed, and the conservation laws of Bernoulli's function and potential vorticity along the current axis are used. Spatial changes of velocity and depth of the current are imposed as boundary conditions south of Cape Shiono-misaki. These conditions are based on the facts that are ohserved south of the cape: abrupt acceleration of the Kuroshio and the spatial change of sea levels. The current paths east of the cape are computed.This model reproduces well the actual nearshore NLM paths. It also produces offshore NLM paths west of and over the Izu Ridge, but not east of the Izu Ridge. Diffusion of vorticity may be important for the eastern part of the offshore NLM path.An increase of velocity south of the cape is necessary for producing realistic NLM paths. The velocity increase accompanies a decrease of current depth owing to Bernoulli's conservation, and the depth decrease in turn diminishes the absolute vorticity owing to the potential vorticity conservation. The velocity increase, on the other hand, strengthens the negative velocity shear and diminishes the relative vorticity. If the decreases of the relative and absolute vorticities compensate each other, the path goes excessively southward owing to the negative curvature south of the cape. Dominance of the relative vorticity change over the absolute vorticity change prevents, the path from shifting southward and causes the realistic NLM paths.The NLM paths need different amplitudes of the changes south of the cape depending on the velocity and transport of the current, but in any case, the nearshore NLM path needs larger changes than the offshore NLM path. This property and the amplitude of the changes are consistent with observations.  相似文献   

19.
Transitions between the three typical paths of the Kuroshio south of Japan (the nearshore and offshore non-large-meander paths and the large-meander path) are described using sea level data at Miyake-jima and HachijÔ-jima in the Izu Islands and temperature data at a depth of 200 m observed from 1964 to 1975 and in 1980.In transitions between the nearshore and offshore non-large-meander paths the variation of the Kuroshio path occurs first in the region off Enshû-nada between the Kii Peninsula and the Izu Ridge and subsequently over the ridge. In the nearshore to offshore transition the offshore displacement of the path occurs first off Enshû-nada and then develops southeastwardly in the direction of HachijÔ-jima. In the reverse transition shoreward displacement occurs first off Enshû-nada and then throughout the region west and east of the Izu Ridge. The position of the Kuroshio south of Cape Shiono-misaki (the southernmost tip of the Kii Peninsula) is almost fixed near the coast throughout these transition periods, and significant variations of the Kuroshio path only occur east of the cape. The nearshore to offshore and offshore to nearshore transitions can be estimated to take about 25 and 35 days, respectively, during which the variation of the Kuroshio path over the Izu Ridge occurs for the last 11 and 25 days.The transitions between the non-large-meander and large-meander paths show that the large-meander path is mostly formed from the nearshore non-large-meander path and always changes to the offshore non-large-meander path.  相似文献   

20.
The generation of small meanders of the Kuroshio off southern Kyûshû is investigated. Basing on the fact that the small meanders tend to follow an increase in velocity of the Kuroshio in the Satsunan region (Sekine andToba, 1981), the influence of this velocity increase on the quasi-stationary path of the Kuroshio is studied numerically. Simplified bottom and coastal topographies are employed in a two layer model ocean. A quasi-stationary numerical solution with a constant inflow is used for the initial condition, and a temporal increase in the inflow with corresponding leakage is employed as the boundary condition to investigate nonlinear effects due to the increase in current velocity. Experiments for four different physical models are carried out to determine the specific roles of the continental slope, the planetary-effect, and density stratification. Temporal increase in the inflow tends to cause offshore shift of the current path. But the topographic effect of the continental slope is strong enough that no significant shift of the current path occurs in the case of the barotropic ocean. However, in the case of a baroclinic ocean, temporal increase in the inflow does cause generation of small meanders, because density stratification diminishes the topographic effect. A larger density stratification provides more favorable condition for the appearance of the small meander, and a cyclonic eddy is formed on the continental side of the small meander path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号