首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In this study we provide evidence for methane hydrates in the Taranaki Basin, occurring a considerable distance from New Zealand's convergent margins, where they are well documented. We describe and reconstruct a unique example of gas migration and leakage at the edge of the continental shelf, linking shallow gas hydrate occurrence to a deeper petroleum system. The Taranaki Basin is a well investigated petroleum province with numerous fields producing oil and gas. Industry standard seismic reflection data show amplitude anomalies that are here interpreted as discontinuous BSRs, locally mimicking the channelized sea-floor and pinching out up-slope. Strong reverse polarity anomalies indicate the presence of gas pockets and gas-charged sediments. PetroMod™ petroleum systems modelling predicts that the gas is sourced from elevated microbial gas generation in the thick slope sediment succession with additional migration of thermogenic gas from buried Cretaceous petroleum source rocks. Cretaceous–Paleogene extensional faults underneath the present-day slope are interpreted to provide pathways for focussed gas migration and leakage, which may explain two dry petroleum wells drilled at the Taranaki shelf margin. PetroMod™ modelling predicts concentrated gas hydrate formation on the Taranaki continental slope consistent with the anomalies observed in the seismic data. We propose that a semi-continuous hydrate layer is present in the down-dip wall of incised canyons. Canyon incision is interpreted to cause the base of gas hydrate stability to bulge downward and thereby trap gas migrating up-slope in permeable beds due to the permeability decrease caused by hydrate formation in the pore space. Elsewhere, hydrate occurrence is likely patchy and may be controlled by focussed leakage of thermogenic gas. The proposed presence of hydrates in slope sediments in Taranaki Basin likely affects the stability of the Taranaki shelf margin. While hydrate presence can be a drilling hazard for oil and gas exploration, the proposed presence of gas hydrates opens up a new frontier for exploration of hydrates as an energy source.  相似文献   

2.
3.
浅剖资料在南海北部东沙西南海域水合物调查中的应用   总被引:1,自引:0,他引:1  
南海北部东沙海域陆坡已经被证实为天然气水合物前景分布区,浅地层剖面数据以其高效率采集过程和浅表层高分辨率的特点被国内外学者应用到天然气水合物调查中并取得了很多成果。以南海北部东沙西南海域的两条浅剖测线为例,分析了该区浅表层沉积物的声学特征,并在浅剖剖面上发现了浅层含气带以及气体泄露现象,初步推测为深部的天然气水合物分解后通过断层运移到浅层中形成了浅层含气带,部分浅层气体还通过泄露点喷射到海水中从而形成了剖面中的气体泄露现象。最后,进一步通过对研究区域的沉积及气源条件、温压条件、地质及生物证据的讨论,证实该区具有天然气水合物发育的基本条件,因此,可以证实上述浅剖资料解释中关于天然气水合物的推测。  相似文献   

4.
This study is a synthesis of gas-related features in recent sediments across the western Black Sea basin. The investigation is based on an extensive seismic dataset, and integrates published information from previous local studies. Our data reveal widespread occurrences of seismic facies indicating free gas in sediments and gas escape in the water column. The presence of gas hydrates is inferred from bottom-simulating reflections (BSRs). The distribution of the gas facies shows (1) major gas accumulations close to the seafloor in the coastal area and along the shelfbreak, (2) ubiquitous gas migration from the deeper subsurface on the shelf and (3) gas hydrate occurrences on the lower slope (below 750 m water depth). The coastal and shelfbreak shallow gas areas correspond to the highstand and lowstand depocentres, respectively. Gas in these areas most likely results from in situ degradation of biogenic methane, probably with a contribution of deep gas in the shelfbreak accumulation. On the western shelf, vertical gas migration appears to originate from a source of Eocene age or older and, in some cases, it is clearly related to known deep oil and gas fields. Gas release at the seafloor is abundant at water depths shallower than 725 m, which corresponds to the minimum theoretical depth for methane hydrate stability, but occurs only exceptionally at water depths where hydrates can form. As such, gas entering the hydrate stability field appears to form hydrates, acting as a buffer for gas migration towards the seafloor and subsequent escape.  相似文献   

5.
The available geological and thermodynamic data, essential for the formation and accumulation of gas hydrates, have been integrated and broadly interpreted for the deeper waters of India. The preliminary studies indicate that, in all probability, vast gas hydrate resources exist in the shallow sediments under deep waters. The area of the Bay of Bengal and Arabian Sea, off the coast of India and Andaman Islands, have accumulated thick sediments, over 22 and 10 km, respec tively, during collision of the Indian Plate with the Tibetan Plate. Bottom Simulating Reflectors (BSRs), indicating the likely presence of gas hydrates, have been observed from multichannel and single-channel seismic reflec tion data west of the Andaman Islands and Kerala-Konkan offshore. The Indian continental shelf, slope, and rise areas have, at places, shown the presence of gas-charged sediments and gas seeps through faults. There are commercial oil and gas fields in the shallow waters of both the east and west coasts of India. These are indicative of generation of both biogenic as well as thermogenic gases in the offshore areas of India. For the first time, an attempt has been made to estimate in-place gas hydrate resources under deep waters of India beyond 600 m water depth to the legal continental shelf boundary, and to the Andaman Islands. The gas hydrate resources appear to be vast, and require extensive exploratory efforts for their precise mapping and quantitative assessment.  相似文献   

6.
南海北部陆坡区是中国最具潜力的天然气水合物聚集区。通过对研究区似海底反射层(BSR)、水深及热流值分布进行交会,得到了水深、热流双因素对天然气水合物形成的共同控制机理。研究认为,热流值中等(70~83mW/m^2)的地区最有利于天然气水合物的形成和聚集,热流值升高,天然气水合物形成的水深有总体增大的趋势。另外,天然气水合物的形成也需要良好的盖层条件。模拟了当上覆泥质沉积物盖层厚度不同时,天然气水合物形成所需的最低水深,并对不同泥质沉积物盖层厚度对天然气水合物稳定带底界面和厚度的影响做了研究和探讨。当泥质沉积物盖层的厚度越大时,天然气水合物形成的水深可以更浅;当泥质沉积物盖层厚度较小时,天然气水合物的形成则需要更大的水深。另外,当水深越大时,天然气水合物稳定带的底界面(BGHSZ)越深,天然气水合物稳定带的厚度越大。  相似文献   

7.
天然气水合物目前已经成为世界范围的一个研究热点,而我国的天然气水合物研究起步则相对较晚,通过阅读国内外有关文献,总结了天然气水合物在海底的分布特征,聚集和形成机制,产状及其形成机理,甲烷羽的形成过程,天然气水合物在沉积物中的聚集位置通常有两种情况:一是较浅的沉积物(海底以下几米)中,受控于泥底辟,泥火山,断层等;二是较深的沉积物(海底以下几十米,甚至更深)中,受控于流体,当断层延伸至海底时,通常在水合物聚集处的上部发现甲烷羽,天然气以溶解气,游离气或分子扩散的形式运移,在温,压适宜的沉积物中,即水合物稳定带内聚集并形成水合物,水合物的形成过程是:最初形成晶体,呈分散状分布于沉积物中,之后逐渐聚集,生长成结核状,层状,最后形成块状,在细粒的浅层沉积物中,通常以较慢的速度生长,形成分散状的水合物;而在粗粒沉积物中,水合物通常呈填隙状,并且这种产状可能位于较深层位中,我国南海在温度,压力,构造条件,天然气来源等方面都能满足天然气水合物的形成条件,并且在南海也发现了一些水合物存在的标志,如似海底反射层(BSR)以及孔隙水中氯离子浓度的降低。因此,天然气水合物在我国南海海域可能有很好的前景。  相似文献   

8.
Increased oil and gas exploration activity has led to a detailed investigation of the continental shelf and adjacent slope regions of Mahanadi, Krishna–Godavari (KG) and Cauvery basins, which are promising petroliferous basins along the eastern continental margin of India. In this paper, we analyze the high resolution sparker, subbottom profiler and multibeam data in KG offshore basin to understand the shallow structures and shallow deposits for gas hydrate exploration. We identified and mapped prominent positive topographic features in the bathymetry data. These mounds show fluid/gas migration features such as acoustic voids, acoustic chimneys, and acoustic turbid layers. It is interesting to note that drilling/coring onboard JOIDES in the vicinity of the mounds show the presence of thick accumulation of subsurface gas hydrate. Further, geological and geochemical study of long sediment cores collected onboard Marion Dufresne in the vicinity of the mounds and sedimentary ridges shows the imprints of paleo-expulsion of methane and sulfidic fluid from the seafloor.  相似文献   

9.
经过对"探宝号"调查船在2001年8月在南海东北部陆坡及台湾南部恒春海脊海域采集的多道地震剖面资料进行的地震反射波数据分析、研究和解释,结果表明:(1)南海东北部陆坡段区域和台湾南部恒春海脊海域地震剖面上均显示有被作为天然气水合物存在标志的BSR,但两区域构造成因、形式和相关地质环境的不同造成了此两处的天然气水合物成因及过程的不同.(2)南海东北部陆坡区域的水合物形成与该区广泛发育的断裂带、滑塌构造体及其所形成的压力场屏蔽环境有关,而台湾南部恒春海脊海域的天然气水合物的形成则与马尼拉海沟俯冲带相关的逆冲推覆构造、增生楔等及其所对应的海底流体疏导体系有关.(3)南海陆缘区域广泛发育有各种断裂带、滑塌构造体、泥底辟、俯冲带、增生楔等,且温压环境合适,是天然气水合物矿藏极有可能广泛分布的区域.  相似文献   

10.
Multichannel seismic reflection data from the Cosmonaut Sea margin of East Antarctica have been interpreted in terms of depositional processes in the continental slope and rise area. A major sediment lens is present below the upper continental rise along the entire Cosmonaut Sea margin. The lens probably consists of sediments supplied from the shelf and slope, being constantly reworked by westward flowing bottom currents, which redeposited the sediments into a large scale drift deposit prior to the main glaciogenic input along the margin. High-relief semicircular or elongated depositional structures are also found on the upper continental rise stratigraphically above the regional sediment lens, and were deposited by the combined influence of downslope and alongslope sediment transport. On the lower continental rise, large-scale sediment bodies extend perpendicular to the continental margin and were deposited as a result of downslope turbidity transport and westward flowing bottom currents after initiation of glacigenic input to the slope and rise. We compare the seismostratigraphic signatures along the continental margin segments of the adjacent Riiser Larsen Sea, the Weddell Sea and the Prydz Bay/Cooperation Sea, focussing on indications that may be interpreted as a preglacial-glaciomarine transition in the depositional environment. We suggest that earliest glaciogenic input to the continental slope and rise occurred in the Prydz Bay and possibly in the Weddell Sea. At a later stage, an intensification of the oceanic circulation pattern occurred, resulting in the deposition of the regional plastered drift deposit along the Cosmonaut Sea margin, as well as the initiation of large drift deposits in the Cooperation Sea. At an even later stage, possibly in the middle Miocene, glacial advances across the continental shelf were initiated along the Cosmonaut Sea and the Riiser Larsen Sea continental margins.  相似文献   

11.
The presence of a wedge of offshore permafrost on the shelf of the Canadian Beaufort Sea has been previously recognized and the consequence of a prolonged occurrence of such permafrost is the possibility of an underlying gas hydrate regime. We present the first evidence for wide-spread occurrences of gas hydrates across the shelf in water depths of 60–100 m using 3D and 2D multichannel seismic (MCS) data. A reflection with a polarity opposite to the seafloor was identified ∼1000 m below the seafloor that mimics some of the bottom-simulating reflections (BSRs) in marine gas hydrate regimes. However, the reflection is not truly bottom-simulating, as its depth is controlled by offshore permafrost. The depth of the reflection decreases with increasing water depth, as predicted from thermal modeling of the late Wisconsin transgression. The reflection crosscuts strata and defines a zone of enhanced reflectivity beneath it, which originates from free gas accumulated at the phase boundary over time as permafrost and associated gas hydrate stability zones thin in response to the transgression. The wide-spread gas hydrate occurrence beneath permafrost has implications on the region including drilling hazards associated with the presence of free gas, possible overpressure, lateral migration of fluids and expulsion at the seafloor. In contrast to the permafrost-associated gas hydrates, a deep-water marine BSR was also identified on MCS profiles. The MCS data show a polarity-reversed seismic reflection associated with a low-velocity zone beneath it. The seismic data coverage in the southern Beaufort Sea shows that the deep-water marine BSR is not uniformly present across the entire region. The regional discrepancy of the BSR occurrence between the US Alaska portion and the Mackenzie Delta region may be a result of high sedimentation rates expected for the central Mackenzie delta and high abundance of mass-transport deposits that prohibit gas to accumulate within and beneath the gas hydrate stability zone.  相似文献   

12.
Small amounts of free gas in interstitial sediment pores are known to significantly lower compressional (P-) wave velocity (Vp). This effect, combined with moderately elevated Vp from the presence of gas hydrates, is usually thought to be the cause for the often observed strong negative reflection coefficients of bottom simulating reflections (BSRs) at the base of gas hydrate stability (BGHS). At several locations however, weak BSRs have been observed, which are difficult to reconcile with a presence of gas in sediment pores. We here present a rock physics model for weak BSRs on the Hikurangi Margin east of New Zealand. Thin sections of a fine-grained mudstone sample from a submarine outcrop in the vicinity of a weak BSR show macroscopic porosity in the form of fractures and intrafossil macropores. We apply the Kuster-Toksöz theory to predict seismic velocities for a rock with water-saturated interstitial micropores and gas or hydrates in macroscopic pore space simulating fractures or compliant macropores. We match field observations of a weak BSR with a reflection coefficient of −0.016 with two end-member models; (1) rocks with gas hydrate-filled voids with a concentration of <4% of bulk sediment overlying water-filled voids, or (2) fully gas-saturated voids at a concentration of <2% beneath water-filled voids. A natural system is likely to consist of a combination of these end-members and of macroporosity filled with a mixture of water and gas or hydrate. Our results suggest weak BSRs may be caused by gas hydrate systems in fractures and macropores of fine-grained sediments with fully water-saturated interstitial pore space. Gas may be supplied into the macroscopic pore space by diffusion-driven short-range migration of methane generated within the gas hydrate stability field or, our favoured model based on additional geologic considerations, long-range advective migration from deeper sources along fractures.  相似文献   

13.
Continental shelf systems are highly dynamic sedimentary environments, where sediments from biogenic production as well as from terrigenous sources are redistributed in the shelf depositional system, and partly exported off the shelf to the slope and the deep sea. The Golfe d’Arguin (Mauritania, NW Africa) is dominated by such redistribution processes, involving clastic silt imported as dust from the Sahara desert and biogenic carbonates of marine origin. Indeed, surface-sediment grain size and mineralogy show a clear north–south partitioning of sediment type. Fine material is winnowed from the northern part of the gulf, and transported toward the southern part off the Banc d’Arguin, where coarse silt settles on the outer shelf and upper slope, at least down to 600 m water depth. Particles of the fine silt fraction, estimated in terms of eolian material collected aboard the research vessel, are thought to be exported further offshore as they correspond to grain sizes previously reported from adjacent deep-sea sediments. These findings suggest that the interpretation of dust records from the continental slope and rise off NW Africa must consider reworking and partitioning processes active on the Mauritanian shelf.  相似文献   

14.
Gas hydrate has been recognized as a potential energy resource in South China Sea (SCS). Understanding the acoustic response of gas hydrate formation in the SCS sediments is essential for regional gas hydrate investigation and quantification. The sediments were obtained from gravity core sampling at E 115°12.52363′ N 19°48.40299′. Gas hydrate was formed within a “gas + water-saturated SCS sediments” system. Combination of a new bender element technique and coated time domain reflectometry (TDR) was carried out to study the acoustic response of hydrate occurrence in SCS sediments. The results show the acoustic signal becomes weak when hydrate saturation (Sh) is lower than 14%. The acoustic velocities (Vp, Vs) of the sediments increase with Sh during hydrate formation, and Vs increases relatively faster when Sh is higher than 14%. These results indicate that tiny hydrate particles may firstly float in the pore fluid, which causes a significant acoustic attenuation, but has little influence on shear modulus. As time lapses and Sh approaches 14%, numerous particles coalesce together and contact with sediment particles. As a result, Vs has a sharp increase when hydrate saturation exceeds 14%. Several velocity models were validated with the experimental data, which suggests a combination of the BGTL (Biot–Gassmann Theory modified by Lee) model and the Weighted Equation is suitable to estimate Sh in SCS.  相似文献   

15.
The presence of gas hydrate in the Ulleung Basin, East Sea (Japan Sea), inferred by various seismic indicators, including the widespread bottom-simulating reflector (BSR), has been confirmed by coring and drilling. We applied the standard AVO technique to the BSRs in turbidite/hemipelagic sediments crosscutting the dipping beds and those in debris-flow deposits to qualitatively assess the gas hydrate and gas concentrations. These BSRs are not likely to be affected by thin-bed tuning which can significantly alter the AVO response of the BSR. The BSRs crosscutting the dipping beds in turbidite/hemipelagic sediments are of low-seismic amplitude and characterized by a small positive gradient, indicating a decrease in Poisson’s ratio in the gas-hydrate stability zone (GHSZ), which, in turn, suggests the presence of gas hydrate. The BSRs in debris-flow deposits are characterized by a negative gradient, indicating decreased Poisson’s ratio below the GHSZ, which is likely due to a few percent or greater gas saturations. The increase in the steepness of the AVO gradient and the magnitude of the intercept of the BSRs in debris-flow deposits with increasing seismic amplitude of the BSRs is probably due to an increase in gas saturations, as predicted by AVO model studies based on rock physics. The reflection strength of the BSRs in debris-flow deposits, therefore, can be a qualitative measure of gas saturations below the GHSZ.  相似文献   

16.
Multidisciplinary surveys were conducted to investigate gas seepage and gas hydrate accumulation on the northeastern Sakhalin continental slope (NESS), Sea of Okhotsk, during joint Korean–Russian–Japanese expeditions conducted from 2003 to 2007 (CHAOS and SSGH projects). One hundred sixty-one gas seeps were detected in a 2000 km2 area of the NESS (between 53°45′N and 54°45′N). Active gas seeps in a gas hydrate province on the NESS were evident from features in the water column, on the seafloor, and in the subsurface: well-defined hydroacoustic anomalies (gas flares), side-scan sonar structures with high backscatter intensity (seepage structures), bathymetric structures (pockmarks and mounds), gas- and gas-hydrate-related seismic features (bottom-simulating reflectors, gas chimneys, high-amplitude reflectors, and acoustic blanking), high methane concentrations in seawater, and gas hydrates in sediment near the seafloor. These expressions were generally spatially related; a gas flare would be associated with a seepage structure (mound), below which a gas chimney was present. The spatial distribution of gas seeps on the NESS is controlled by four types of geological structures: faults, the shelf break, seafloor canyons, and submarine slides. Gas chimneys that produced enhanced reflection on high-resolution seismic profiles are interpreted as active pathways for upward gas migration to the seafloor. The chimneys and gas flares are good indicators of active seepage.  相似文献   

17.
Presence of gas hydrate and free gas in Iranian part of Makran accretionary prism changes the elastic properties of unconsolidated sediments and produces sharp bottom simulating reflectors (BSRs) which are observed on the 2-D seismic data. Different methods have been applied to estimate the gas hydrate and free gas saturations in marine sediments based on seismic measurements. Most of these methods are based on relating the elastic properties to the hydrate and free gas saturations and remotely estimating their concentration. In this regard, using the effective medium theory (EMT) which was developed for different modes of hydrate distribution is more considered among other rock physics theories. The main concern about saturation estimations based on EMT is that the velocities of the hydrate-bearing sediments primarily depend on how they are distributed within the pore space. Therefore, understanding the modes of hydrate distribution (at least cementing or non-cementing modes) is necessary to decrease the estimation uncertainties.The first intention of paper is to investigate amplitude variation versus offset (AVO) analysis of BSR to determine the hydrate distribution modes. The results from the probable saturation revealed that if the hydrate cements the sediment grains, BSR would show the AVO class IV and if hydrate does not cement the sediment grains, then BSR would show either the AVO class II or class III depending on the free gas saturation just beneath the BSR. The second intention of paper is to introduce some templates called reflectivity templates (RTs) for quantitative study of hydrate resources. These templates are provided based on the EMT to quantify the hydrate and free gas near the BSR. Validation of this approach by synthetic data showed that a reliable quantification could be achieved by intercept-gradient RTs, only if these attributes are determined with a high accuracy and good assumptions are made about the mineralogical composition and porosity of the unconsolidated host sediments. The results of this approach applied to a 2-D marine pre-stack time migrated seismic line showed that less than 10% of the gas hydrate accumulated near to the BSR in anticlinal-ridge type structure of Iranian deep sea sediments. The free gas saturation near to the BSR by assuming a homogeneous distribution was less than 3% and by assuming patchy distribution was about 3–10%.  相似文献   

18.
Seismic character of gas hydrates on the Southeastern U.S. continental margin   总被引:14,自引:0,他引:14  
Gas hydrates are stable at relatively low temperature and high pressure conditions; thus large amounts of hydrates can exist in sediments within the upper several hundred meters below the sea floor. The existence of gas hydrates has been recognized and mapped mostly on the basis of high amplitude Bottom Simulating Reflections (BSRs) which indicate only that an acoustic contrast exists at the lower boundary of the region of gas hydrate stability. Other factors such as amplitude blanking and change in reflection characteristics in sediments where a BSR would be expected, which have not been investigated in detail, are also associated with hydrated sediments and potentially disclose more information about the nature of hydratecemented sediments and the amount of hydrate present.Our research effort has focused on a detailed analysis of multichannel seismic profiles in terms of reflection character, inferred distribution of free gas underneath the BSR, estimation of elastic parameters, and spatial variation of blanking. This study indicates that continuous-looking BSRs in seismic profiles are highly segmented in detail and that the free gas underneath the hydrated sediment probably occurs as patches of gas-filled sediment having variable thickness. We also present an elastic model for various types of sediments based on seismic inversion results. The BSR from sediments of high ratio of shear to compressional velocity, estimated as about 0.52, encased in sediments whose ratios are less than 0.35 is consistent with the interpretation of gasfilled sediments underneath hydrated sediments. This model contrasts with recent results in which the BSR is explained by increased concentrations of hydrate near the base of the hydrate stability field and no underlying free gas is required.  相似文献   

19.
Multichannel seismic data, containing high-amplitude reflections from Cenozoic sediments of the Bjørnøya Basin, southwestern Barents Sea, have been studied, inferring the existence of gas hydrate and free gas. The Cenozoic succession comprises Late Palaeocene and Early Eocene claystones and siltstones and locally also some sandstones overlain by Late Pleistocene glaciogenic sediments. The inferred gas hydrate and free gas accumulations are mainly located in the vicinity of larger faults which can be followed up to base Tertiary level, and which seem to have controlled the geographical distribution of the accumulations. Free gas accumulations are inferred to occur most frequently within the Late Palaeocene strata that occur below the gas hydrate stability zone, and indicate that relatively small gas leakages from deeper accumulations have dominated. Larger gas leakages have probably led to gas migration up into the gas hydrate stability zone and, together with the increasing thickness of the hydrate stability zone towards the north, control the distribution of the suspected gas hydrates. The inferred gas leakages are closely related to the Cenozoic evolution of the Barents Sea, and are probably caused by gas expansion due to the removal of up to 1 km of sediments from the Barents Sea shelf and/or reservoir tilting during the Late Cenozoic glaciations which affected this area.  相似文献   

20.
南海北部天然气水合物研究进展   总被引:11,自引:0,他引:11  
天然气水合物是一种新型的储量巨大的绿色能源,是目前世界各国研究界的研究热点之一。我国以及美国、日本、印度、韩国等国家都采集到了天然气水合物的实物样品。虽然我国对天然气水合物的研究起步较晚,但近年来的研究已经取得了飞速的进步,而且也于2007年5月在南海北部陆坡的神狐海域成功采集到天然气水合物的实物样品,这是在南海海域首次获取天然气水合物实物样品,证实了南海北部蕴藏着丰富的天然气水合物资源,标志着我国天然气水合物调查研究水平又上了一个新的台阶。目前,南海北部陆坡已经作为我国天然气水合物未来开发的战略选区之一。在总结我国天然气水合物以往十几年研究工作的基础上,综述了我国天然气水合物近年来在南海北部的地质、地球物理、地球化学3个方面的研究进展,提出了未来天然气水合物勘探和研究的方向和建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号