首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于多星融合高度计数据的中国海波浪能资源评估   总被引:4,自引:2,他引:2  
Wave energy resources are abundant in both offshore and nearshore areas of the China's seas. A reliable assessment of the wave energy resources must be performed before they can be exploited. First, for a water depth in offshore waters of China, a parameterized wave power density model that considers the effects of the water depth is introduced to improve the calculating accuracy of the wave power density. Second, wave heights and wind speeds on the surface of the China's seas are retrieved from an AVISO multi-satellite altimeter data set for the period from 2009 to 2013. Three mean wave period inversion models are developed and used to calculate the wave energy period. Third, a practical application value for developing the wave energy is analyzed based on buoy data. Finally, the wave power density is then calculated using the wave field data. Using the distribution of wave power density, the energy level frequency, the time variability indexes, the total wave energy and the distribution of total wave energy density according to a wave state, the offshore wave energy in the China's seas is assessed. The results show that the areas of abundant and stable wave energy are primarily located in the north-central part of the South China Sea, the Luzon Strait, southeast of Taiwan in the China's seas; the wave power density values in these areas are approximately 14.0–18.5 k W/m. The wave energy in the China's seas presents obvious seasonal variations and optimal seasons for a wave energy utilization are in winter and autumn. Except for very coastal waters, in other sea areas in the China's seas, the energy is primarily from the wave state with 0.5 m≤H s≤4 m, 4 s≤T e≤10 s where H s is a significant wave height and T e is an energy period; within this wave state, the wave energy accounts for 80% above of the total wave energy. This characteristic is advantageous to designing wave energy convertors(WECs). The practical application value of the wave energy is higher which can be as an effective supplement for an energy consumption in some areas. The above results are consistent with the wave model which indicates fully that this new microwave remote sensing method altimeter is effective and feasible for the wave energy assessment.  相似文献   

2.
- In this paper, the depth of the summer thermocline of the South Huanghai Sea and the East China Sea is calculated with two kinds of one-dimentional models, and the formation reasons are explained for the summer thermocline depth distribution characteristics in the study area. It is proved that in the shelf area of the East China Sea, tidal mixing has an important impact on the thermocline depth. And a new explanation for certain phenomena of the so-called coastal upwelling in the East China Sea is proposed.  相似文献   

3.
In this paper, the low-frequency fluctuations of sea level and their relationship to atmospheric forcing along the coasts of the Huanghai Sea and the East China Sea are studied. Spectrum analyses are made for the time series of daily mean sea level, atmospheric pressure and wind stress at seven coastal stations. It is found that at all the stations, the main part of the energy of the sea level fluctuations, within the (2-60)-day period, is concentrated on the (12-60)-day period band and that an obvious spectral peak appears at the 3-day period. Along the coast of the Huanghai Sea, variations in the sea level are greater in winter than in summer. In winter, along the coasts of the Huanghai Sea and the East China Sea there is a kind of sea level fluctuations propagating southwards. Among the many factors causing sea level variation, the most obvious one is atmospheric pressure, followed next by the alongshore wind stress.  相似文献   

4.
A group of statistical algorithms are proposed for the inversion of the three major components of Case-Ⅱ waters in the coastal area of the Huanghai Sea and the East China Sea. The algorithms are based on the in situ data collected in the spring of 2003 with strict quality assurance according to NASA ocean bio-optic protocols. These algorithms are the first ones with quantitative confidence that can be applied for the area. The average relative error of the inversed and in situ measured components‘ concentrations are: Chl-a about 37%, total suspended matter (TSM) about 25%, respectively. This preliminary result is quite satisfactory for Case-Ⅱ waters, although some aspects in the model need further study. The sensitivity of the input error of 5% to remote sensing reflectance (Rrs) is also analyzed and it shows the algorithms are quite stable. The algorithms show a large difference with Tassan‘s local SeaWiFS algorithms for different waters, except for the Chl-a algorithm.  相似文献   

5.
The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is inter-decadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.  相似文献   

6.
A European Space Agency' s ENVISAT advanced synthetic aperture radar (ASAR) image covering Zhejiang coastal water in the East China Sea (ECS) was acquired on 1 August 2007. This image shows that there are about 20 coherent internal solitary wave (ISW) packets propagating southwestward toward Zhejiang coast. These ISW packets are separated by about 10 kin, suggesting that these ISWs are tide-generated waves. Each ISW packet contains 5-15 wave crests. The wavelengths of the wave crests within the ISW packets are about 300 m. The lengths of the leading wave crests are about 50 km. The ISW amplitude is estimated from solving KdV equation in an ideal two-layer ocean model. It is found that the ISW amplitudes is about 8 m. Further analysis of the ASAR image and ocean stratification profiles show that the observed ISWs are depression waves. Analyzing the tidal current finds that these waves are locally generated. The wavelength and amplitude of the ECS ISW are much smaller than their counter- parts in the South China Sea (SCS). The propagation speed of the ECS ISW is also an order of magnitude smaller than that of the SCS ISW. The observed ISWs in the ECS happened during a spring tide period.  相似文献   

7.
Based on the maximum entropy principle, a probability density function (PDF) is derived for the distribution of wave heights in a random wave field, without any more hypothesis. The present PDF, being a non-Rayleigh fonu, involves two parameters: the average wave height H^- and the state parameter γ. The role of γ in the distribution of wave heights is examined. It is found that γ may be a certain measure of sea state. A least square method for determining γ from measured data is proposed. In virtue of the method, the values of γ are determined for three sea states from the data measured in the East China Sea. The present PDF is compared with the well known Rayleigh PDF of wave height and it is shown that it much better fits the data than the Rayleigh PDF. It is expected that the present PDF would fit some other wave variables, since its derivation is not restricted only to the wave height.  相似文献   

8.
The long-term variation and seasonal variation of sea level have a notable effect on the calculation of engineering water level. Such an effect is first analyzed in this paper. The maximal amplitude of inter-annual anomaly of monthly mean sea level along the China coast is larger than 60 cm. Both the storm surge disaster and cold wave disaster are seasonal disasters in various regions, so the water level corresponding to the 1% of the cumulative frequency in the cumulative frequency curve of hourly water level data for different seasons in various sea areas is different from design water level, for example, the difference between them reaches maximum in June, July and August for northern sea area, and maximum in September, October and November for Southern China Sea. The hourly water level data of 19 gauge stations along the China coast are analyzed. Firstly, the annual mean sea level for every station is obtained; secondly, linear chan ging rates of annual mean sea level are obtained with the stochasti  相似文献   

9.
1 Introduction The outer shelf of the South China Sea is a di- verse environment characterized by sharp changes in bottom topography (Wang et al., 2002). Internal wave and diapycnal mixing may be a vital mechanism con- trolling the distribution of physical water properties, nutrient fluxes, and concentrations of particulate mat- ter. Therefore, the research on diapycnal mixing on the outer shelf in the South China Sea is of great impor- tance to explore the level and variability of the abov…  相似文献   

10.
By using the shallow water wave data continuously recorded in the Bohai Sea, Huanghai Sea, East China sea and South China Sea. a model of wave spectrum in shallow water is developed with three parameters—average wave height, average period and relative depth—on the basis of the principle of the spectrum pattern simularity and the method of parameterization. The magnitude of frequency index in the high frequency  相似文献   

11.
近45 年南海-北印度洋波浪能资源评估   总被引:2,自引:0,他引:2  
郑崇伟  李训强  潘静 《海洋科学》2012,36(6):101-104
利用 ERA-40海表10 m 风场驱动第三代海浪数值模式(WAVEWATCH-,Ⅲ简称 WW3),得到南海–北印度洋1957年9月~2002年8月的海浪资料,计算该海域的波浪能,分析波浪能流密度的四季分布特征、不同能级出现的频率及波浪能流密度的稳定性,为海浪发电、海水淡化等选址提供依据.研究发现,南海–北印度洋海域蕴藏着较为丰富的波浪能:(1)南海–北印度洋大部分海域的年平均波浪能流密度在2 kW/m 以上,大值区位于南海、孟加拉湾、索马里附近海域.(2)南海–北印度洋海域波浪能流密度大于2 kW/m 和大于4 kW/m 出现的频率都较高.(3)南海–北印度洋的波浪能流密度具有较好的稳定性,春季、秋季、冬季的稳定性好于夏季,南海的稳定性好于北印度洋  相似文献   

12.
1988-2010年中国海域波浪能资源模拟及优势区域划分   总被引:7,自引:2,他引:5  
郑崇伟  苏勤  刘铁军 《海洋学报》2013,35(3):104-111
基于国际先进的第三代海浪数值模式WAVEWATCH -Ⅲ,以CCMP风场为驱动场,模拟得到中国海域域1988年1月-2010年12月的海浪场。从提高波浪能资源利用效率的角度出发,定义了波浪能资源开发的有效时间,综合考虑波浪能流密度的大小、资源开发有效时间出现的频率、能流密度的稳定性(变异系数)、SWH和能流密度的变化趋势、资源的总储量和有效储量等方面,对中国海域域的波浪能资源进行评估。研究发现:(1)南海北部四季皆为能流密度的大值区,各个季节基本都在8 kW/m以上,秋冬两季更是高达20 kW/m以上。(2)东海和南海大部分海域的波浪能资源开发有效时间出现频率较高。(3)能流密度的稳定性在1月最好,4月和10月次之,7月最差;南海能流密度的稳定性好于其余海域,其中又以南海北部海域的稳定性最好。(4)中国海域域大部分海域单位面积的波浪能总储量在2×104 kW·h/m以上,高值中心分布于南海北部海域,有效储量的分布特征与总储量基本一致。(5)我国大部分海域的SWH和波浪能流密度呈显著的逐年线性递增趋势,SWH的递增趋势为0.5~2.5 cm/a,能流密度的递增趋势为0.05~0.55 kW/(m·a)。(6)我国大部分海域蕴藏着较为丰富的波浪能资源,其中南海北部、台湾以东洋面及琉球群岛附近海域为波浪能资源的优势区域。  相似文献   

13.
划区管理工具被国际社会公认为生物多样性养护和可持续利用最为有效的手段,广泛应用于各国管辖范围内和公海及国际海底区域。本研究在探讨划区管理所依据关键生物地理要素的基础上,以我国管辖范围内的近岸海域为研究对象,根据海洋生物多样性分区原则与分区要素,开展基于生物地理要素的海洋生物多样性管理分区,将我国近岸海域划分为一级分区6个:黄海、渤海、东海、台湾海峡过渡区、南海和三沙岛礁区;二级分区16个:北黄海近岸海域、南黄海近岸海域、辽东湾、渤海湾、莱州湾、渤海中央水域、苏北及旧黄河口、长江口及杭州湾、浙江东南沿海、台湾海峡过渡区、珠江口及广东沿海、环海南岛沿海、北部湾及广西沿海、西沙岛礁区、南沙岛礁区、中沙岛礁区;三级分区101个:黄海14个,渤海10个,东海20个,台湾海峡过渡区16个,南海38个,三沙岛礁区3个。探讨了分区要素对结果的影响,为海洋生物多样性保护和管理提供参考。  相似文献   

14.
福建沿海海域波浪能资源分析与评价   总被引:2,自引:0,他引:2  
张军  许金电  郭小钢 《台湾海峡》2012,31(1):130-135
采用波浪模拟的方法,较准确计算得出福建沿海海域波浪能资源分布状况,并给出相应的分析和综合评价.主要结论如下:(1)福建沿海海域波浪能平均密度为2.6~7.3 kW/m,波浪能资源储量为2 210.45 MW,在我国沿海海域仅次于台湾和广东,是波浪能开发利用可以优先考虑的海区之一.(2)福建沿海海域波浪能资源储量的70%分布于平潭岛以北海域,其值达1 512.49 MW.其中,尤以北礵地区值最大,为378.80 MW.(3)以年平均波高为指标,福建沿海海域中东山区段为三类区,其他区段均为一类区和二类区,具有良好的开发前景.(4)福建沿海海域波浪能具有波功率密度低、资源分布广泛且不均匀、波功率密度随季节变化、能量具有多向性等分布特点.(5)基于福建波浪能的开发与利用现状,建议应优先着眼于解决边远海岛等特殊场所的用电问题.  相似文献   

15.
中国近海海表温度变化的极端特性及其气候特征研究   总被引:4,自引:0,他引:4  
本文基于1982–2017年日再分析数据,分析了中国近海海表温度变化的极端特性、历史演变、空间格局及可能影响,并探讨了与全球变化和区域气候变率的关联性。近30多年来,中国近海海表总体升温明显,尤以春季长江口附近及以南的外部近岸海域升温最为显著,线性升温速率高达0.2°C/(10 a)。相比而言,沿岸海域对气候变暖暂缓的响应可能更为明显;极端高(低)温强度以显著增强(减弱)为主,尤以春(夏)季幅度最大。沿岸海域春季极值温差增强显著,易通过物候变化引起生物迁移和赤潮等生态灾害突发、频发;北部海域极端事件持续天数大于南部,其中,黄海、东海极端高温持续天数增加显著,可能对渔业资源产生较大影响。受气候变暖暂缓影响,极端低温持续天数亦显著增加;极端高温在长江口附近,台湾海峡和南海北部等海域累积频次上升显著,未来极端海洋热浪事件可能持续增加,将对南海珊瑚礁等产生较大影响。极端低温累积频次以显著降低为主。然而长江口及以南沿岸极端低温在冬春季增强明显,可能对红树林等产生一定影响;太平洋年代际振荡(PDO)暖位相期间,ENSO暖事件得到增强,易引起中国近海海表极端低温的频发。北极涛动(AO)正位相时,限制了极区冷空气向南扩展,中国近海海表极端高温频次趋于增加,其危险性增强。  相似文献   

16.
为海岛供电,是波浪能开发利用技术的重要应用领域。在海岛周边波浪能资源开发利用之前,需对波浪能资源进行精细化勘查,并在此基础上准确分析掌握工程实施海域的波浪能资源特征,以便开展有针对性工程设计。本文以威海褚岛北部海域为研究目标,结合对历史数据和水动力理论分析,制定精细化勘查方案,并通过代表性验证试验,对方案进行修正,再应用修正后的方案对目标海域进行长期观测。该方法改进了传统的波浪观测方法,更适用于小区域波浪要素的精细化观测,且在保证观测质量的前提下,有效降低了观测成本。另一方面,针对波向四季变化明显,且海岛周边波浪受岛岸线反射和绕射影响且地形变化剧烈的特点,本文利用改进的SWAN(simulating waves nearshore)数值模型计算目标海域波浪能资源,并结合统计学方法,研究波浪能量随波向分布特征的计算分析方法,得出褚岛周边海域全年波浪能量随波向的分布特征。  相似文献   

17.
中国近海及临近海域海浪的季节特征及其时间变化   总被引:6,自引:0,他引:6  
利用1992年12月-2005年3月TOPEX卫星高度计资料,对中国近海波浪季节特征及其时间变化进行了分析。分析结果表明,冬季平均波高最大,台湾海峡、南海北部、中南半岛东南海域以及吕宋海峡外侧是冬季的大浪区;夏季平均波高最小;春、秋两季为过渡期。对冬季大浪所在区域波浪时间变化的研究表明,年变化是其主要时间变化特征,而季节内变化是该海区的另一重要特征,并且以5 a为周期的年际变化与ENSO事件有着很好的对应关系。  相似文献   

18.
1988—2009年中国海波候、风候统计分析   总被引:3,自引:0,他引:3  
利用高精度、高时空分辨率、长时间序列的CCMP(Cross-Calibrated,Multi-Platform)风场,驱动国际先进的第三代海浪模式WAVEWATCH-Ⅲ(WW3),得到中国海1988年1月~2009年12月的海浪场。对中国海的波候(风候)进行精细化的统计分析,分析了海表风场和浪场的季节特征、极值风速与极值波高、风力等级频率和浪级频率、海表风速和波高的逐年变化趋势,结果显示:(1)中国海的海浪场与海表风场具有较好的一致性,尤其是在DJF(December,January,February)期间;海表风速和波高在MAM(March,April,May)期间为全年最低,在DJF期间达到全年最大;MAM和JJA(June,July,August)期间,中国海大部分海域的波周期在3~5.5s,SON(September,October,November)和DJF期间为4.5~6.5s。(2)中国海极值风速、极值波高的大值区分布于渤海中部海域、琉球群岛附近海域和台湾以东广阔洋面、台湾海峡、东沙群岛附近海域、北部湾海域、中沙群岛南部海域。(3)吕宋海峡在MAM、SON、DJF期间均为6级以上大风和4m以上大浪的相对高频海域,JJA期间,6级以上大风的高频海域位于中国南半岛东南部海域,4m以上大浪主要出现在10°N以北。(4)在近22a期间,中国海大部分海域的海表风速、有效波高呈显著性逐年线性递增趋势,风速递增趋势约0.06~0.15m.s-1.a-1,波高递增趋势约0.005~0.03m.a-1。  相似文献   

19.
Studies of offshore wave climate based on satellite altimeter significant wave height(SWH) have widespread application value. This study used a calibrated multi-altimeter SWH dataset to investigate the wave climate characteristics in the offshore areas of China. First, the SWH measurements from 28 buoys located in China's coastal seas were compared with an Ifremer calibrated altimeter SWH dataset. Although the altimeter dataset tended to slightly overestimate SWH, it was in good agreement with the in situ data in general. The correlation coefficient was 0.97 and the root-mean-square(RMS) of differences was 0.30 m. The validation results showed a slight difference in different areas. The correlation coefficient was the maximum(0.97) and the RMS difference was the minimum(0.28 m) in the area from the East China Sea to the north of the South China Sea.The correlation coefficient of approximately 0.95 was relatively low in the seas off the Changjiang(Yangtze River) Estuary. The RMS difference was the maximum(0.32 m) in the seas off the Changjiang Estuary and was0.30 m in the Bohai Sea and the Yellow Sea. Based on the above evidence, it is confirmed that the multialtimeter wave data are reliable in China's offshore areas. Then, the characteristics of the wave field, including the frequency of huge waves and the multi-year return SWH in China's offshore seas were analyzed using the23-year altimeter wave dataset. The 23-year mean SWH generally ranged from 0.6–2.2 m. The greatest SWH appeared in the southeast of the China East Sea, the Taiwan Strait and the northeast of the South China Sea.Obvious seasonal variation of SWH was found in most areas; SWH was greater in winter and autumn than in summer and spring. Extreme waves greater than 4 m in height mainly occurred in the following areas: the southeast of the East China Sea, the south of the Ryukyu Islands, the east of Taiwan-Luzon Island, and the Dongsha Islands extending to the Zhongsha Islands, and the frequency of extreme waves was 3%–6%. Extreme waves occurred most frequently in autumn and rarely in spring. The 100-year return wave height was greatest from the northwest Pacific seas extending to southeast of the Ryukyu Islands(9–12 m), and the northeast of the South China Sea and the East China Sea had the second largest wave heights(7–11 m). For inshore areas, the100-year return wave height was the greatest in the waters off the east coast of Guangdong Province and the south coast of Zhejiang Province(7–8 m), whereas it was at a minimum in the area from the Changjiang Estuary to the Bohai Sea(4–6 m). An investigation of sampling effects indicates that when using the 1°×1°grid dataset, although the combination of nine altimeters obviously enhanced the time and space coverage of sampling, the accuracy of statistical results, particularly extreme values obtained from the dataset, still suffered from undersampling problems because the time sampling percent in each 1°×1°grid cell was always less than33%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号