首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
Undrained bearing capacity of spudcan under combined loading   总被引:1,自引:0,他引:1  
The bearing capacities of spudcan foundation under pure vertical (V),horizontal (H),moment (M) loading and the combined loading are studied based on a series of three-dimensional finite element analysis.The effects of embedment ratio and soil non-homogeneity on the bearing capacity are investigated in detail.The capacities of spudcan under different pure loading are expressed in non-dimensional bearing capacity factors,which are compared with published results.Ultimate limit states under combined loading are presented by failure envelopes,which are expressed in terms of dimensionless and normalized form in three-dimensional load space.The comparison between the presented failure envelopes and available published numerical results reveals that the size and shape of failure envelopes are dependent on the embedment ratio and the non-homogeneity of the soil.  相似文献   

2.
This paper presents two kinematic failure mechanisms of threc-dimensional rectangular footing resting on homogeneous undrained clay foundation under uniaxial vertical loading and uniaxial moment loading. The failure mechanism under vertical loading comprises a plane strain Prandti-type mechanism over the central part of the longer side, and the size of the mechanism gradually reduces at the ends of the longer side and over the shorter side as the corner of rectangular footing is being approached where the direction of soil motion remains normal to each corresponding side respectively. The failure mechanism under moment loading comprises a plane strain scoop sliding mechanism over the central part of the longer side, and the radius of scoop sliding mechanism increases linearly at the ends of the longer side. On the basis of the kinematic failure mechanisms mentioned above, the vertical ultimate bearing capacity and the ultimate bearing capacity against moment or moment ultimate bearing capacity are obtained by use of upper bound limit analysis theory. At the same time, numerical analysis results, Skempton' s results and Salgado et al. 's results are compared with this upper bound solution. It shows that the presented failure mechanisms and plastic limit analysis predictions are validated. In order to investigate the behaviors of undrained clay foundation beneath the rectangular footing subjected to the combined loadings, numerical analysis is adopted by virtue of the general-purpose FEM software ABAQUS, where the clay is assumed to obey the Mohr-Coulomb yielding criterion. The failure envelope and the ultimate bearing capacity are achieved by the numerical analysis results with the varying aspect ratios from length L to breadth B of the rectangular footing. The failure mechanisms of rectangular footing which are subjected to the combined vertical loading V and horizontal loading H (Vertical loading V and moment loading M, and horizontal loading H and moment loading M respectively are observed in the finite e  相似文献   

3.
The bearing behavior of suction caissons supporting offshore wind turbines under two-way cyclic lateral loading and dead load in clay was investigated with consideration of soil strength degradation and adhesive interface friction between caisson walls and heterogeneous clay using the finite-element package ABAQUS.An ABAQUS built-in user subroutine was programmed to calculate the adhesive interface friction between clay and caisson walls.The results of parametric studies showed that the degradation of bearing capacity could be aggravated by the decrease of the aspect ratio.The offset between the rotation point of the soil inside the caisson and the central axis of the caisson increased with the increasing vertical load and number of cycles.The linearly increasing strength profile and adhesive interface led to the formation of an inverted spoon failure zone inside the caisson.The settlement-rotation curves in each cycle moved downwards with increasing number of cycles due to the soil strength degradation.  相似文献   

4.
A system reliability estimation method for spatial jacket platforms is developed in this paper,The jacket platform is modeled into three-dimensional assembly of spatial beam and plate elements in Fi-nite Element Method(FEM).The limit failure states correspond to collapse of a series of structural mem-bers which are identified by engineering design criteria.In this paper the following aspects are taken intoaccount:the punching shear and buckiing failures in member failure modes for the tubular joints and tubu-lar columns respectively;incremental loading approach for establishment of the safety margin equations ofsystem failure;the algorithm of enumerating significant failure modes for the structural systems and otherconcepts,such as the false failure mode and the virtual limit state.The final work is devoted to the reliabili-ty analysis for a practical jacket platform presently put into operation on the Bohai Sea.The computed re-sults shows that method suggested in this paper is feasible and effective for  相似文献   

5.
This paper investigates the characteristics of reduction of the lateral vibration by use of a Tuned Mass Damper (TMD) for offshore jacket platforms under impact loading. Unlike traditional analysis, the present analysis focuses on the energy concept of TMD/structure systems. In this study, a time domain is taken. The platform is modeled as a simplified single-degree-of-freedom (SDOF) system by extraction of the first vibration mode of the structure and the excited force is assumed to be impact loading. The energy dissipation and energy transmission of the structure-TMD system are studied. Finally, an optimized TMD design for the modeled platform is demonstrated based on a new type of cost function - maxi-mum dissipated energy by TMD. Results indicate that TMD control is effective in reducing the Standard deviation of the deck motion but less effective in reducing the maximum response under impact loading.  相似文献   

6.
A series of physical tests are conducted to examine the characteristics of the wave loading exerted on circular-front breakwaters by regular waves. It is found that the wave trough instead of wave crest plays a major role in the failure of submerged circular caissons due to seaward sliding. The difference in the behavior of seaward and shoreward horizontal wave forces is explained based on the variations of dynamic pressure with wave parameters. A wave load model is proposed based on a modified first-order solution for the dynamic pressure on submerged circular-front caissons under a wave trough. This wave loading model is very useful for engineering design. Further studies are needed to include model uncertainties in the reliability assessment of the breakwater.  相似文献   

7.
—On the basis of ice-induced forced vibration model,ice-induced displacement responses ofoffshore fixed platforms are investigated in both time domain and frequency domain.The relationships ofice-induced displacement responses with ice breaking modes,ice acting directions and platform structuresare analyzed and determined.The results lead to an important conclusion obtained for the first time thatice breaking frequency and the natural frequency of the first mode of the platform are the two main fac-tors that dominate the degree of vibration.The present work provides a firm basis for both design and op-eration of fixed platforms against ice loading.  相似文献   

8.
Risk Assessment of Vertical Breakwaters -A Case Study in Turkey   总被引:1,自引:2,他引:1  
In the reliability-risk assessment, the second order reliability index (βⅡ ) method and the Conditional Expectation Monte Carlo (CEMC) simulation are interrelated as a new Level Ⅲ approach for the analysis of the safety level of the Dalaman yacht harbor vertical wall breakwater in Turkey. The missing wave data of the Dalaman measurement station are hindcasted by use of multi-layer feed-forward neural networks with the steepest descent and conjugate gradient algorithms. The structural failure probabilities of sliding and overturning failure modes are forecasted by approximation of the failure sur-face with a second-degree polynomial of an equal curvature at the design point. in the new approach, for each randomly generated load and tide combination, the joint failure probability reflects both the occurrence probability of loading condition and the structural failure risk at the limit state. The approach can be applied to risk assessment of vertical breakwaters in short CPU durations of portable comput  相似文献   

9.
Monotonic lateral load model tests were carried out on steel skirted suction caissons embedded in the saturated medium sand to study the bearing capacity. A three-dimensional continuum finite element model was developed with Z_SOIL software. The numerical model was calibrated against experimental results. Soil deformation and earth pressures on skirted caissons were investigated by using the finite element model to extend the model tests. It shows that the "skirted" structure can significantly increase the lateral capacity and limit the deflection, especially suitable for offshore wind turbines, compared with regular suction caissons without the "skirted" at the same load level. In addition, appropriate determination of rotation centers plays a crucial role in calculating the lateral capacity by using the analytical method. It was also found that the rotation center is related to dimensions of skirted suction caissons and loading process, i.e. the rotation center moves upwards with the increase of the "skirted" width and length; moreover, the rotation center moves downwards with the increase of loading and keeps constant when all the sand along the caisson's wall yields. It is so complex that we cannot simply determine its position like the regular suction caisson commonly with a specified position to the length ratio of the caisson.  相似文献   

10.
- In this paper, an engineering method is employed to calculate the horizontal and vertical wave forces on the mat of the submersible platform under Froude-Krylov hypothesis. According to some model tests, appropriate diffraction coefficients are selected. And the results of the formulae given in the paper agree satisfactorily with those experimental data now available. The proposed computational method is effective and convenient to use in evaluating the horizontal and vertical wave forces on the mat. An exmaple is also given in this paper. Finally, the effects of the vertical wave force on the platorm's sit-on-bottom stability are analyzed.  相似文献   

11.
In this paper, results of a three-dimensional finite element study addressing the effect of embedment ratio (L/D) of caisson foundations on the undrained bearing capacity under uniaxial and combined loadings are discussed. The undrained response of caisson foundations under uniaxial vertical (V), horizontal (H) and moment (M) loading are investigated. A series of equations are proposed to predict the ultimate vertical, moment and maximum horizontal bearing capacity factors. The undrained response of caisson foundations under combined V-H and V-M load space is studied and presented using failure envelopes generated with side-swipe method. The kinematic mechanism accompanying failure under uniaxial loading is addressed and presented for different embedment ratios. Predictions of the uniaxial bearing capacities are compared with other models and it is confirmed that the proposed equations appropriately describe the capacity of caisson foundations under uniaxial vertical, horizontal and moment loading in homogenous undrained soils. The results of this paper can be used as a basis for standard design codes of off-shore skirted shallow foundations which will be the first of its kind.  相似文献   

12.
Coastal protection is proposed to be made out of a contiguous caisson type of wall. These caissons can be designed to resist both lateral static and cyclic loading. With adequate depth of embedment, the walls can be designed to offer significant lateral passive resistance to counteract the lateral static and cyclic loading arising out of wave action. This article describes a set of laboratory tests on model caissons embedded into soft marine clay with different embedment depths. Specially designed earth pressure cells are embedded into the caisson at different depths. A pneumatic system was used to apply lateral static and cyclic loading. Test beds were prepared conforming to soft clay conditions in a test tank of appropriate size. The test results reveal that with this type of arrangement the variation in earth pressure with depth can be conveniently established. The earth pressure developed is related to the lateral load applied. The depth at which the maximum earth pressure occurs is same for both static and cyclic loading. Further, under cyclic loading there is no failure encountered even under cyclic loading level corresponding to 0.9 times the ultimate static lateral capacity.  相似文献   

13.
Semi-deep skirted foundations are now considered to be a viable foundation option for a variety of onshore and offshore applications. The capacity under combined vertical, horizontal, and moment loadings must be found to ensure their capability and stability. In this study, undrained bearing capacity subjected to vertical loading, as part of combined loading is determined through stress characteristics and finite element analyses. Circular skirted foundations with different soil strength and geometries considering embedment depth effects have been studied. Stress field, kinematic mechanism accompanying failure, and bearing capacity factors for various embedment ratios are investigated. Acquired vertical failure mechanism has demonstrated the transition from a general shear to a punch shear failure. Comparisons with different research works including conventional methods, upper and lower bound, finite element analyses, physical modeling, experimental, and centrifuge tests have indicated the underestimation of conventional approaches and accuracy of proposed methods in determining bearing capacity. Furthermore, differences between predicted bearing capacities and the results of this study increased with D/B ratio due to ignoring the significant role of skin friction in larger embedment circumference.  相似文献   

14.
桶形基础越来越广泛应用于海洋油气平台、海上风机、输电塔、防波堤等构筑物,研究其循环承载特性对以上构筑物服役安全性具有重要意义。通过在软黏土中开展单桶循环上拔以及小间距群桶循环上拔和循环下压超重力离心模型试验,发现循环上拔地基破坏模式为整体破坏,裂隙均呈现圆弧形,循环下压呈现渐进式整体破坏模式,下压过程的挤压作用可明显减小桶周泥面高度,导致其承载力降低。模拟双向受荷工况的循环上拔试验在5次加载后荷载弱化系数开始趋于稳定,远早于单向受荷工况;单向和双向受荷工况循环上拔荷载弱化系数残余稳定值分别为0.31和0.32,循环下压荷载弱化系数最小值为0.35,表明不同加载方式竖向循环荷载作用下,此三者大小均可用软黏土地基灵敏度倒数预估。  相似文献   

15.
Drag anchor is a widely used economical anchor option for offshore floating structures. The anchor behavior under unidirectional loading and combined loading is important for anchor selection. The anchor behavior under combined loading, characterized by the yield envelope, can also be used for the prediction of anchor installation, which is still an issue in anchor design. However, most existing studies on anchor capacity are for plate anchors which focused only on the anchor pullout capacity in soil with uniform shear strength. The behavior of drag anchor under unidirectional and combined loading in soil with linearly increasing shear strength profile is seldom investigated. The current 2D finite element studies investigate the anchor behavior for a horizontal anchor fluke in clay with linearly increasing shear strength under unidirectional vertical, horizontal and rotational loadings first. Then based on the results of anchor unidirectional loading behavior, the yield envelopes for anchor under combined loading for both shallow and deep embedded flukes are studied. The effect of anchor embedment depth, soil non- homogeneity, soil overburden pressure and the soil/anchor interface breakaway conditions are studied to provide insight for drag anchor design.  相似文献   

16.
Determining the ultimate capacity of suction caissons in response to combined vertical, horizontal, and moment loading is essential for their design as foundations for offshore wind turbines. However, the method implemented for stability analysis is quite limited. Numerical limit analysis has an advantage over traditional limit equilibrium methods and nonlinear finite element methods in this case because upper and lower bounds can be achieved to ensure that the exact ultimate capacity of the caisson falls within the appropriate range. This article presents theories related to numerical limit analysis. Simulations are conducted for centrifuge model tests, the findings of which reveal the ability of numerical limit analysis to deal with the inclined pullout capacity of suction caissons. Finally, this article proposes an estimation of the ultimate capacity of a 3.5 MW offshore wind turbine foundation on normally consolidated clay based on the typical environmental parameters of Bothkennar, Scotland. Undrained failure envelopes and safety factors are obtained for suction caissons with different embedment ratios. Failure mechanisms, plastic zones, clay stress distributions, and the influence of the skin friction coefficients of caissons are discussed in detail.  相似文献   

17.
Drag anchor is a widely used anchor type in offshore engineering for the mooring system. The prediction of the anchor trajectory installation and the final position is important for anchor selection in design. The existing method using yield envelope method for trajectory prediction ignored the shallow anchor behavior but applied the deep yield envelope from a deeply embedded horizontal fluke in uniform clay for the whole drag-in installation process. However, the anchor fluke embedment depth and inclination angle change continually during installation in clay with linearly increasing shear strength soil profile in practice. Studies on the effect of fluke inclination angle on the anchor behavior in clay with such non-uniform soil profile under unidirectional and combined loading are important and necessary for the improvement of the yield envelope method to ensure a reasonable prediction. The current 2D finite element studies investigate the anchor behavior for inclined fluke in clay with linearly increasing shear strength under unidirectional vertical, horizontal and rotational loadings first. Then the effects of the fluke inclination angle, soil non-homogeneity and embedment depth ratio on the shallow yield envelopes are investigated. It is found that the effect of fluke inclination angle on the vertical capacity factors for anchor in clay with non-uniform and uniform soil profile is largely different. The resultant large impact on the yield envelopes shown here illustrates the importance of considering the fluke inclination angle and soil non-homogeneity in the prediction of anchor trajectory using yield envelope method.  相似文献   

18.
吸力基础是海洋工程中新型的一种基础型式,广泛应用于海洋平台、海洋浮动式结构等,近年来,也被作为浅海离岸风力发电工程的基础。吸力基础易遭受较大的水平动力荷载和弯矩,从而可能产生较大水平位移和转角;同时,由于海床冲刷,会降低其承载能力。为克服这些不足,提出了一种新型吸力基础———裙式吸力基础,把分析传统吸力基础砂土中的沉贯方法,拓广到裙式吸力基础中,研究该基础型式在砂土中的可沉贯性以及所需的吸力;并与同情况下的传统吸力基础进行了比较,证明了所提出的裙式吸力基础具有较好的沉贯性能,具有工程实践推广价值。  相似文献   

19.
周素静  张艳  王栋 《海洋通报》2019,38(6):727-733
当负压沉箱被用作深水管汇或管道终端基础时,其长径比常介于1~2之间,而目前的沉箱复合承载力包络面表达式大都针对长径比不超过1的情况,少数覆盖长径比大于1的研究又不适用于土体表层强度非零的情况。采用有限元方法,模拟竖向力、水平力和弯矩共同作用下沉箱基础的响应,采用Probe加载模式获得沉箱的复合承载力包络面。进行大量变动参数分析,针对长径比为1~2的沉箱,讨论了长径比和土体强度分布对单向承载力和包络面的影响,并给出了预测沉箱复合承载力的归一化表达式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号