首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
波浪在Jarlan型开孔潜堤上的运动   总被引:2,自引:0,他引:2  
The wave motion over a submerged Jarlan-type breakwater consisting of a perforated front wall and a solid rear wall was investigated analytically and experimentally. An analytical solution was developed using matched eigenfunction expansions. The analytical solution was confirmed by previously known solutions for single and double submerged solid vertical plates, a multidomain boundary element method solution, and experimental data. The calculated results by the analytical solution showed that compared with double submerged vertical plates, the submerged Jarlan-type perforated breakwater had better wave-absorbing performance and lower wave forces. For engineering designs, the optimum values of the front wall porosity, relative submerged depth of the breakwater, and relative chamber width between front and rear walls were 0.1–0.2, 0.1–0.2, and 0.3–0.4, respectively. Interchanging the perforated front wall and solid rear wall may have no effect on the transmission coefficient. However, the present breakwater with a seaside perforated wall had a lower reflection coefficient.  相似文献   

2.
《Coastal Engineering》2006,53(10):799-815
Using the volume of fluid (VOF) method, a numerical model is developed to estimate the nonlinear dynamics of a pontoon type moored submerged breakwater under wave action and the forces acting on the mooring lines, for both the vertical and inclined mooring alignments. The model is developed for a two-dimensional wave field in a vertical plane. The finite displacements of the breakwater such as sway, heave and roll in a very small time step are considered and the numerical grid cells intersected by the breakwater surfaces for changing its position due to wave action are treated using the concept of porous body model. Also, two-dimensional experimental studies are carried out to investigate the performance of the proposed model. The comparison of the computed and measured results reveals that the developed numerical model can reproduce well the dynamics of the floating body and the mooring line forces.  相似文献   

3.
圆弧面防波堤波浪力初步研究   总被引:7,自引:1,他引:7  
圆弧面防波堤是在半圆形防波堤基础上开发的一种新型防波堤。首先通过与半圆形防波堤相同条件下的波浪试验,检验圆弧面防波堤的稳定性,并利用数值波浪水槽对圆弧面防波堤的水力特性进行初步研究,探求造成圆弧面防波堤与半圆形防波堤波浪力差别的主要原因。通过圆弧面防波堤与半圆形防波堤波浪力的对比试验,提出了圆弧面防波堤波浪力的简化计算方法,以半圆堤正向水平波浪力乘以一修正系数,在堤顶淹没情况下修正系数可取1.3,在堤顶出水情况下修正系数可取1.1。  相似文献   

4.
Yong Liu  Yu-cheng Li  Bin Teng 《Ocean Engineering》2007,34(17-18):2364-2373
This study examines the hydrodynamic performance of a new perforated-wall breakwater. The breakwater consists of a perforated front wall, a solid back wall and a submerged horizontal porous plate installed between them. The horizontal porous plate enhances the stability and wave-absorbing capacity of the structure. An analytical solution based on linear potential theory is developed for the interaction of water waves with the new proposed breakwater. According to the division of the structure, the whole fluid domain is divided into three sub-domains, and the velocity potential in each domain is obtained using the matched eigenfunction method. Then the reflection coefficient and the wave forces and moments on the perforated front wall and the submerged horizontal porous plate are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a perforated-wall breakwater with a submerged horizontal solid plate [Yip, T.L., Chwang, A.T., 2000. Perforated wall breakwater with internal horiontal plate. Journal of Engineering Mechanics ASCE 126 (5), 533–538] and a vertical wall with a submerged horizontal porous plate [Wu, J.H., Wan, Z.P., Fang, Y., 1998. Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Engineering 25 (9), 767–779]. Numerical results show that with suitable geometric porosity of the front wall and horizontal plate, the reflection coefficient will be always rather small if the relative wave absorbing chamber width (distance between the front and back walls versus incident wavelength) exceeds a certain small value. In addition, the wave force and moment on the horizontal plate decrease significantly with the increase of the plate porosity.  相似文献   

5.
The performance of coastal vertical seawalls in extreme weather events is studied numerically, aiming to provide guidance in designing and reassessing coastal structures with vertical wall. The extreme wave run-up and the pressure on the vertical seawall are investigated extensively. A time-domain higher-order boundary element method (HOBEM) is coupled with a mixed Eulerian-Lagrangian technique as a time marching technique. Focused wave groups are generated by a piston wave-maker in the numerical wave tank using a wave focusing technique for accurately reproducing extreme sea states. An acceleration-potential scheme is used to calculate the transient wave loads. Comparisons with experimental data show that the extended numerical model is able to accurately predict extreme wave run-ups and pressures on a vertical seawall. The effects of the wave spectrum bandwidth, the wall position and the wave nonlinearity on the wave run-up and the maximum wave load on the vertical seawall are investigated by doing parametric studies.  相似文献   

6.
1.IntroductionVertical breakwaters are widely used for harbor and coastline protection in coastal engineering.Recently,perforated breakwaters have been often used in practice as they can effectively reduce thewaveforces actingon,the wave reflectionfromand…  相似文献   

7.
基于粘性流模型的筒型基础防波堤波浪力数值分析   总被引:3,自引:0,他引:3  
筒型基础防波堤是一种新型港口海岸工程结构,其基础上部是由连续排列的圆筒构成的直立防浪墙.采用粘性流数值模型,研究连续圆筒防波堤上波浪力竖向分布、水平(沿圆筒环向)分布和波浪力合力特性,并对粘性流数值模型计算的平面直墙波浪力与海港水文规范方法计算结果;粘性流数值模型计算的连续圆筒墙面波浪力与平面直墙波浪力;无限长连续圆筒墙面波浪力与有限长连续圆筒墙面波浪力进行比较分析.针对所选工程算例,建议按<海港水文规范>中平面直墙波浪力计算方法确定连续圆筒防波堤上的波浪力时,波峰时考虑0.90左右的折减系数,波谷时考虑0.95左右的折减系数.  相似文献   

8.
The form of Boussinesq equation derived by Nwogu (1993) using velocity at an arbitrary distance and surface elevation as variables is used to simulate wave surface elevation changes. In the numerical experiment, water depth was divided into five layers with six layer interfaces to simulate velocity at each layer interface. Besides, a physical experiment was carried out to validate numerical model and study solitary wave propagation.“Water column collapsing”method (WCCM) was used to generate solitary wave. A series of wave gauges around an impervious breakwater were set-up in the flume to measure the solitary wave shoaling, run-up, and breaking processes. The results show that the measured data and simulated data are in good agreement. Moreover, simulated and measured surface elevations were analyzed by the wavelet transform method. It shows that different wave frequencies stratified in the wavelet amplitude spectrum. Finally, horizontal and vertical velocities of each layer interface were analyzed in the process of solitary wave propagation through submerged breakwater.  相似文献   

9.
张景新  刘桦 《海洋工程》2009,(3):553-564
Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is analyzed. The physical configurations include a rigid barrier and a long channel of finite depth. For linear water waves, by matching the velocity along the barrier and along the gap, the systems of linear equations about the velocity potentials are obtained. The wave run-up is further analyzed for various settings of barrier height and distance between the barrier and the wall, i.e. the chamber length. For nonlinear waves and random sea waves, a numerical model is extended to investigate the effect parameters of the barrier on the wave run-up against the seawall. Not only the numerical simulations, but also the analytical results illustrate that the wave run-up on the seawall depends very much on the distance between the barrier and the vertical seawall.  相似文献   

10.
Based on a parallel SPH-LES model, a three dimensional numerical wave basin is developed to study wave interaction with coastal structures. The OpenMP programming technology combined with an existing MPI program contained in the parallel version of SPHysics code has been implemented to enable the simulation of hundred millions of particles running on a computer cluster. As part of the numerical basin development work an active absorbing wave maker and a sponge layer are introduced. The dynamic boundary conditions are also corrected to reduce the spurious effects. Wave generation and propagation in the numerical wave basin is first tested and confirmed with analytical results. Then, the model is applied to simulate wave interactions with a vertical breakwater and a vertical cylinder in order to further assess the capability of the numerical wave basin. The predicted free surface elevation near the vertical breakwater is compared with the experimental data while the horizontal forces and overturning moments acting on the vertical cylinder are verified with the analytical results. In all these cases the model results show excellent agreement with the validation data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号