首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
非接触式六自由度运动测量与分析方法   总被引:8,自引:2,他引:6  
本文提供了一种非接触式六自由度运动测量与分析方法。首先应用位置测量仪(PSD)对安置在模型上的红外线发光源(LED)进行测量,然后用所编制的软件计算出模型的六个自由度运动情况。该方法避免了接触式测量仪对模型作用一定的力而产生的误差,同时具有较高的位置解析度与频率响应能力,测量结果精度较高。该方法可同时测量空间三个点的运动坐标从而可用计算机求得模型在空间的六个自由度运动情况。测量与分析结果令人满意。  相似文献   

2.
在Fudide-Krylov假设条件下,依据船舶分离建模理论在固定和运动坐标系中计算海面船只六自由度运动数学模型。主要包括:对风、浪、流的单独建模并进行矢量叠加,并在风浪流联合作用下对船舶六自由度运动构建简化的数学建模,完成实时仿真。基于Simulink和V-Realm Builder虚拟现实技术创建船舶运动模型、海洋表面环境及船只的几何模型,对船舶六自由度运动进行视景仿真,给出了有风无浪、有浪无风和风浪兼有三种情况下船只旋回路径和船舶运动轨迹。在VR视景浏览器中创建动态海面上船舶六自由度运动模型,不仅易于实现且结果逼真。得到的结果为进一步研究动态船只目标声散射特性的精确预报提供基础。  相似文献   

3.
由于海洋平台现场实测受到种种客观和主观因素的制约,国内外相关研究很少.“南海奋进号”FPSO开展了长达25个月的实测试验,测量了FPSO六个自由度的运动.对该FPSO在2008年和2009年的运动数据进行统计分析,总结了“南海奋进号”FPSO在这两年不同季节中的运动规律,弥补了中国在海洋工程浮式结构物的运动及载荷实地测量技术方面的空白.  相似文献   

4.
基于 LabVIEW 软件实现水雷弹道的三维可视化。 利用 MATLAB 软件结合仪器舱内弹道记录仪的试验数据或者半实物仿真的六自由度数据,进行格式处理,生成水雷弹道数据。 利用弹道数据和 Lab- VIEW 软件中变形模块驱动三维模型运动,为实现水雷航行与布放的可视化提供新的技术途径,极大地方便了科研人员后期的数据处理和试验分析。  相似文献   

5.
潜器在水下发射火箭时会产生复杂的运动变化,对其研究很有实际意义。参照格特勒运动方程,建立潜器运动的非线性数学模型。导入实验模型的参数,对其六自由度基本运动进行了仿真,并与水池实验结果相比较,验证了仿真模型的有效性。导入发射火箭时潜器受到的完整载荷,计算分析了不同航速下潜器的运动响应和运动控制。结果表明,发射载荷对潜器运动将产生较长时间的显著影响,包括速度损失、升沉运动和纵倾角振荡。航速越小,运动变化越大,恢复所需时间越长,控制越困难。  相似文献   

6.
新型双船起重拆除平台试验研究   总被引:1,自引:1,他引:0  
拆除大型海上结构物是一项非常复杂且充满挑战的工程。现提出一种新型海上平台拆除方案,该方案利用三条半潜船来代替具有重型起重装置的单一船舶,通过两艘相同的半潜船将平台上层建筑托起,随后运至第三艘半潜船上完成平台拆除。在风浪流作用下,半潜船和平台的所处方位和运动姿态一直处于动态变化中,这对船舶调节压载的稳定性以及双船运动的同步性提出了要求。为了确保该方案的高效性和安全性,设计了一套完整的模型试验装置,包括船舶模型、平台拆卸辅助设备、六自由度运动采集与分析系统、控制系统、无线通讯系统以及测量系统。开展了相应的水池试验,试验结果验证了双船起重拆除平台方案中双船协同运输这一关键环节的可行性和安全性。  相似文献   

7.
FSRU码头系泊模型实验与数值模拟研究   总被引:1,自引:0,他引:1  
FSRU在恶劣环境条件下的作业和安全停靠性能与系泊缆张力、靠垫挤压应力、船体6自由度运动等参数有关。针对FSRU码头处海洋环境条件,进行FSRU不同装载状况的模型实验,获得FSRU的6自由度运动及其系泊载荷的动力特性。基于三维辐射和绕射理论,使用Sesam软件进行频域计算,以此为基础在相应海洋环境条件下进行时域耦合分析,获得FSRU 6自由度运动、系泊载荷、靠垫应力等参数的响应时历。结果表明:30%装载、横浪条件下FSRU的运动响应最大,系泊缆张力未达到破断值,靠垫压力超过其压缩60%时的载荷;模型实验对FSRU运动响应和系泊缆张力的预测结果可信,靠垫受力情况需要数值仿真进行辅助研究。  相似文献   

8.
考虑多种非线性因素的张力腿平台动力响应   总被引:1,自引:1,他引:1  
建立了一种考虑多种非线性因素的张力腿平台(TLP)分析模型,其中包括六自由度有限位移,各自由度之间的耦合,瞬时湿表面,瞬时位置,自由表面效应及粘性力等因素引起的非线性。推导出TLP六自由度非线性运动方程。对某典型张力腿平台ISSC TLP进行了时域上的数值计算,求得该平台在规则波作用下的六自由度运动响应。用退化到线性范围的解与已有解进行了对比,吻合良好。数值结果表明,综合考虑非线性因素后响应明显改变,建议在设计TLP平台的时候,考虑非线性因素的影响。  相似文献   

9.
浮式风机的平台作为支撑系统,其六自由度刚体运动响应决定上层风机的运动状态,也影响叶轮的环境载荷。叶轮的运动使周围流场变得复杂,叶片承受着非定常的气动载荷。研究中考虑叶片结构的运动,将基于定常流场的叶素动量理论用于局部叶素的气动分析,考虑偏航模型,充分模拟气流与叶轮的相互作用。在给定平台各个自由度运动下,计算叶轮气动参数,分析平台运动带来的影响,从入流速度方面探究引起气动载荷变化的本质原因。研究发现,叶轮气动性能和转动轴的方向有关,若平台运动改变转动轴方向,会引起气动载荷以多倍于叶轮旋转的频率发生周期变化,平台转动自由度的运动对叶轮气动性能影响显著。  相似文献   

10.
当安装于水下航行体上的旋转装置质量或转动惯量达到一定程度时,其对水下航行体运动与操纵的影响是不可忽略的。针对安装于水下航行体上的旋转装置,分析了水下航行体运动时装置的陀螺效应。得出了旋转装置陀螺力的明确数学方程。不失方法的一般性,假设旋转装置只在运动坐标系的X轴方向有旋转角速度,推导了在考虑陀螺效应作用的情况下水下航行体的六自由度模型方程;以此为基础,建立了水下航行体的仿真模型并对水下航行体的水下运动特性进行了仿真,分析了旋转装置的质量、角速度对水下航行体运动特性的影响规律,从而为研究在考虑陀螺效应情况下的水下航行体操纵奠定了基础。  相似文献   

11.
12.
Motions and slamming impact on catamaran   总被引:1,自引:0,他引:1  
Prediction of craft motions and the dynamic loads acting on a catamaran hull are of great importance to the designer. This paper presents the motions of a Vosper International catamaran in head seas with and without forward speed. Two approaches are used—strip theory and the 3D pulsating source method. A method to predict slamming loads acting on this catamaran section using Computational Fluid Dynamics is presented. The loads acting on catamaran hulls and the cross structure are illustrated.  相似文献   

13.
In this paper, we propose a numerical simulation procedure of moored ship motions due to initial attack of large-scaled tsunamis and investigate the effects on the motions and mooring loads. The effect of methodology on selection of tsunami wave components and of the drag forces are then considered by using the numerical simulation method, applying to several case studies for LNG-carrier. Large ship motions and excessive mooring loads beyond the safe working loads are induced by the resonant tsunami wave components in the sway and surge motions and drag forces.  相似文献   

14.
A physics-based computational model has been developed that is capable of reliably predicting the motion of a 3-D mine-shaped object impacting the water surface from the air, and subsequently, dropping through the water toward the sea bottom. This deterministic model [mine's six-degree-of-freedom dynamics (MINE6D)] accounts for six-degree-of-freedom motions of the body including unsteady hydrodynamic interaction effects. MINE6D allows for physics-based modeling of other hydrodynamic effects due to water impact, viscous drag associated with flow separation and vortex shedding, air entrainment, and realistic flow environments. To demonstrate the efficacy of the model, we compare deterministic MINE6D predictions with tank drops tests and field measurements. MINE6D captures the myriad of complex 3-D motions of cylindrical mines observed in field and laboratory experiments. For relatively simple straight motions, it obtains quantitative comparisons with the field measurements for the kinematics of mines freely dropping in the water including water impact and air cavity effects. In practical applications, the environments are often quite irregular, and the releasing conditions are also with uncertainties. To provide some guidance in understanding and interpreting statistical characterizations of mine motions in practical environments, we perform Monte Carlo simulation using MINE6D. These statistical results are not only the essential input for stochastic bottom impact and burial predictions of mines but also useful for the design of mines.  相似文献   

15.
《Coastal Engineering》2006,53(2-3):209-222
A non-linear shallow water wave model operating on the time-scale of wave groups is compared with measurements of infragravity motions on a rip-channel beach to verify the model concepts and assess the model performance. The measurements were obtained during the RIP-current EXperiment (RIPEX) in concert with the Steep Beach Experiment (SBE) performed at Sand City, Monterey Bay, CA, during the spring of 2001. The nearshore bathymetry was made up of shore-connected shoals incised by relatively narrow rip-channels spaced approximately 125 m apart. The comparison considers a 20-day period during which significant changes in both the offshore wave climate and nearshore bathymetry occurred. The temporal variation in infragravity conditions during the experiment is strong, with computational results typically explaining 70% to 80% of the observed infragravity motions within the nearshore. In contrast to the temporal variation, the alongshore spatial variation in infragravity intensity during the experiment is generally weak, even though the underlying bathymetry shows strong depth variations. Model computations suggest preferential coupling between the computed edge wave motions and the quasi-periodic bathymetry is present, a prerequisite for strong spatial variability. However, the infragravity field is dominated by cross-shore infragravity motions, which are only weakly coupled to the quasi-periodic bathymetry, resulting in a weak alongshore variability of the total infragravity motions.  相似文献   

16.
The accuracy of nearshore infragravity wave height model predictions has been investigated using a combination of the spectral short wave evolution model SWAN and a linear 1D SurfBeat model (IDSB). Data recorded by a wave rider located approximately 3.5 km from the coast at 18 m water depth have been used to construct the short wave frequency-directional spectra that are subsequently translated to approximately 8 m water depth with the third generation short wave model SWAN. Next the SWAN-computed frequency-directional spectra are used as input for IDSB to compute the infragravity response in the 0.01 Hz–0.05 Hz frequency range, generated by the transformation of the grouped short waves through the surf zone including bound long waves, leaky waves and edge waves at this depth. Comparison of the computed and measured infragravity waves in 8 m water depth shows an average skill of approximately 80%. Using data from a directional buoy located approximately 70 km offshore as input for the SWAN model results in an average infragravity prediction skill of 47%. This difference in skill is in a large part related to the under prediction of the short wave directional spreading by SWAN. Accounting for the spreading mismatch increases the skill to 70%. Directional analyses of the infragravity waves shows that outgoing infragravity wave heights at 8 m depth are generally over predicted during storm conditions suggesting that dissipation mechanisms in addition to bottom friction such as non-linear energy transfer and long wave breaking may be important. Provided that the infragravity wave reflection at the beach is close to unity and tidal water level modulations are modest, a relatively small computational effort allows for the generation of long-term infragravity data sets at intermediate water depths. These data can subsequently be analyzed to establish infragravity wave height design criteria for engineering facilities exposed to the open ocean, such as nearshore tanker offloading terminals at coastal locations.  相似文献   

17.
The eruption of an underwater volcano can initiate the disturbances of the sea surface and subsequently generate a group of outward-propagating tsunamis. The theme of this study is to introduce a three-dimensional (3D) fully nonlinear wave model for the simulation of wave motions induced by a bottom jet. A boundary-fitted coordinate system is utilized to conveniently adjust grids according to the transient moving free surface. The governing Laplace equation of the velocity potential is solved by an implicit finite-difference scheme while a mixed explicit/implicit iteration procedure is applied to solve the free-surface boundary conditions. In addition, a set of generalized Boussinesq equations are solved for comparison with the fully nonlinear model. Good agreements in comparisons with the existing numerical and analytical solutions are achieved for cases investigated. Waves induced by three types of bottom jets: namely (1) sudden eruption, (2) initial transient, and (3) periodic transient are discussed in this paper. For the case of sudden erupted jet, a system of 3D outgoing waves as the cylindrical wave pattern are presented and discussed. For the initial transient types, it shows the transition in the incipient stage has a great influence on the initial rising of the water surface and the induced leading waves. Furthermore, an interesting up-down phenomenon in the center of disturbed free surface due to the type of periodic jet is revealed.  相似文献   

18.
A fast time-domain method is developed in this paper for the real-time prediction of the six degree of freedom motions of a vessel traveling in an irregular seaway in infinitely deep water. The fully coupled unsteady ship motion problem is solved by time-stepping the linearized boundary conditions on both the free surface and body surface. A velocity-based boundary integral method is then used to solve the Laplace equation at every time step for the fluid kinematics, while a scalar integral equation is solved for the total fluid pressure. The boundary integral equations are applied to both the physical fluid domain outside the body and a fictitious fluid region inside the body, enabling use of the fast Fourier transform method to evaluate the free surface integrals. The computational efficiency of the scheme is further improved through use of the method of images to eliminate source singularities on the free surface while retaining vortex/dipole singularities that decay more rapidly in space. The resulting numerical algorithm runs 2–3 times faster than real time on a standard desktop computer. Numerical predictions are compared to prior published results for the transient motions of a hemisphere and laboratory measurements of the motions of a free running vessel in oblique waves with good agreement.  相似文献   

19.
By incorporating the wave-induced Coriolis-Stokes forcing into the classical Ekman model, the wind energy input to the Ekman-Stokes layer is investigated, with an emphasis on the surface wave effects when the direction of Stokes drift deviates from that of wind stress. Theoretical analysis of the kinetic energy balance of the Ekman-Stokes layer shows that the total wind energy input consists of the direct wind energy input and the wave-induced energy input. Details of the direct wind and wave-induced energy input are discussed. Based on the ECMWF ERA-40 Re-Analysis wind stress and surface wave data, the global total wind energy input to subinertial motions in the Ekman-Stokes layer is estimated at 2.19 TW, including 0.26 TW (12%) wave-induced energy input and 1.93 TW (88%) direct wind energy input. The effect of sea-ice coverage on the energy input to the Ekman-Stokes layer is also considered. It is shown that the global total energy input could be overestimated by 0.08 TW (about 4%) without taking the sea-ice coverage into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号