首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
全球变暖导致北极地区冻土退化、海冰消融、河流径流增加及海洋动力发生变化,这些因素连同日益增加的人类活动都影响北冰洋中汞的输入和运移。对取自北极东西伯利亚陆架的87个表层沉积物进行了汞含量测试与分析,发现沉积物中汞含量的分布有显著的空间差异性,可分为近岸低汞区(33 ng/g)、陆架中部汞含量中等区(58 ng/g)和北部深水高汞区(84ng/g)。总体来看,从近岸向外海,汞含量随水深的增大而升高。结合沉积物粒度、有机碳和比表面积等指标,发现东西伯利亚陆架沉积物中黏土含量与汞含量呈现正相关,显示了沉积物粒度对汞分布的控制作用。近岸由于受河流输入、海岸侵蚀和环流分选等因素的影响,沉积物粒径较粗,导致汞含量较低,而北部陆架深水区的细粒沉积物则吸附了更多的汞。在楚科奇海和拉普捷夫海,沉积汞含量和总有机碳含量有较强的正相关性,而在东西伯利亚海相关性较弱,这可能是因为东西伯利亚海的沉积有机碳来源相对更为复杂。基于沉积汞的富集因子指标,我们认为北极东西伯利亚陆架沉积汞的污染水平整体较低,受人类活动的影响相对较弱。  相似文献   

2.
陶树豪  杜凌 《海洋学报》2021,43(7):100-113
随着北冰洋海冰快速减退,气–冰–海系统发生显著变化,波弗特流涡也发生显著变化。本文使用实测资料和海洋大气再分析数据,探讨北冰洋波弗特流涡的长期变化和大气动量输入对波弗特流涡变化的影响。波弗特流涡的长期变化可以分为3个典型时期(1980–1995年,1996–2007年,2008–2018年)。最近时期(2008–2018年),波弗特流涡平均流涡强度达到4.39×10–7,相较于第1个时期(1980–1995年),流涡强度增加近2倍,达到稳定的状态。波弗特流涡范围扩大,主体向西北移动;上层海洋斜压性增强。与此同时,上层海洋环流主模态已发生显著转变:1980–1995年,环流主模态为影响整个加拿大海盆的加拿大海盆模态;2008–2018年的主模态则转变为影响整个研究海域的太平洋扇区模态。最近时期,表征气–海之间动量输入的气–海应力显著增加,尤其是夏末秋初的8–10月,与冰–海应力几乎相当。增加的大气动量输入带来平均动能增加,埃克曼泵压效应增强,下盐跃层深度加深,增加的大气动量输入进而导致近年来波弗特流涡的显著增强。加拿大海盆南部是大气动量输入的关键区。  相似文献   

3.
北冰洋西伯利亚陆架海是北极气候快速变化最为显著的海域之一,而沉积硅藻作为极地海洋生态系统的重要组成部分,对环境变化具有敏感的响应。对楚科奇海、东西伯利亚海和拉普捷夫海表层沉积物开展了硅藻组成鉴定,利用典型对应分析方法分析了硅藻属种与1986~2015年环境变量之间的关系。结果表明,夏季和秋季海冰密集度、表层海水盐度是影响研究区表层硅藻分布特征最主要的因素。此外,根据表层站位与环境变量的典型对应分析,可将西伯利亚极地海域划分为4个区域,分别为海冰硅藻组合带、暖水硅藻组合带、沿岸硅藻组合带和混合硅藻组合带。这些表层站位的分区与相应区域的海流模式有明显的相关性,海冰硅藻组合带仅分布于研究区北部的高纬度地区;暖水硅藻组合带位于受白令水和太平洋海水的分支——阿拉斯加沿岸水影响为主的区域;拉普捷夫海南部的沿岸硅藻组合带则受到河流径流和西伯利亚沿岸流的强烈影响;混合硅藻组合带受极地冷水、海冰覆盖、太平洋暖水和陆地径流的共同影响。  相似文献   

4.
北极秋季海冰减少与亚洲大陆冬季温度异常   总被引:1,自引:1,他引:0  
本文使用SVD等诊断分析方法探讨北极秋季海冰密集度与亚洲冬季温度异常之间的关系。结果表明,近30余年来,北极秋季海冰减少伴随着亚洲大陆冬季温度降低,但青藏高原地区、北冰洋和北太平洋沿岸除外。北极秋季海冰密集度减小激发欧亚大陆和北冰洋北部两个区域位势高度的改变,这种异常的变化模态从秋季持续到冬季。位势高度异常的负值中心位于巴伦支海和喀拉海。位势高度异常的正值中心位于蒙古区域。与重力位势高度异常伴随的风场异常为亚洲冬季温度降低提供自北向南的冷气流。随着北极海冰的不断减少,其与亚洲大陆冬季温度降低之间的关系将为气候长期预测提供参考。  相似文献   

5.
2013年北极最小海冰范围比2012年增加的原因分析   总被引:4,自引:4,他引:0  
崔红艳  乔方利  舒启 《海洋学报》2015,37(11):23-32
北极海冰范围从1979年有卫星观测资料以来呈现明显下降趋势,尤其是9月份。2012年9月北极海冰范围达到有观测记录以来的最小值,而2013年9月比2012年同期增加了60%。增加的区域主要在东西伯利亚海区、楚科奇海和波弗特海区。本文应用距平和经验模态分解方法,分析了美国国家冰雪数据中心的北极海冰卫星数据、欧洲预报中心的夏季底层大气环流数据和上层海洋的温度,指出2013年北极最小海冰范围比2012年在北冰洋太平洋扇区增加的原因,是由于表面气温(SAT)降低、海平面气压(SLP)升高、气旋式风场异常、表面空气中水汽含量(SH)降低以及海表面温度(SST)降低5个条件形成的冰-SAT、冰-SST和冰-汽(SH)3个正反馈机制共同作用造成的。  相似文献   

6.
北极快速变化的生态环境响应   总被引:1,自引:0,他引:1  
北冰洋由于其特殊的地理位置,成为全球变化响应最为敏感的地区。本文聚焦北极海冰变化幅度最大的西北冰洋,从营养盐、叶绿素、浮游植物群落和沉积碳埋藏等变化来讨论海洋生态环境对北极快速变化的响应。尽管太平洋北向流和北极周边河流输入加强可以增加西北冰洋上层营养盐储库,但由于夏季硅藻旺发向沉积物迁出大量生源元素,使得上层营养盐相对亏损,部分海域存在显著的氮限制和硅限制。随海冰减退,尽管夏末海盆区浮游植物呈现小型化趋势,但西北冰洋总体上浮游植物现存量和初级生产力呈现增高的趋势;伴随叶绿素极大层下移、北扩,以硅藻为代表的生物泵过程得以更高效的运转。在沉积物埋藏的有机碳中,除原先北冰洋生态系统占据重要比份的冰藻外,硅藻等藻类的有机碳埋藏也逐渐增加。西北冰洋海洋初级生产力的增加不仅促进了生物泵的运转和碳的埋藏,而且给海洋生态系统提供了更多的食物来源。北极海域目前已成为全球碳源汇格局变化最大、海洋生态系统改变最显著的地区之一。  相似文献   

7.
巴伦支海-喀拉海是北冰洋最大的边缘海,能够对环境变化做出快速的响应和反馈,是全球气候变化最为敏感的区域之一,其古海洋环境演变及海冰变化研究是全球气候变化研究的重要组成部分。末次盛冰期以来,该区域的古海洋环境受到太阳辐射、海流强度、海平面变化、温盐环流和河流输入等因素影响发生了一系列不同尺度的波动。巴伦支海受到北大西洋暖水和极地冷水两大水团相互作用的影响,在水团交界处 (极锋) 由于不同水团性质的差异,导致其海水温度、盐度及海冰发生剧烈变化。而喀拉海则受到叶尼塞河和鄂毕河大量淡水输入影响,海流系统较巴伦支海相对复杂,沉积物主要来源于河流输入的陆源物质,并可以通过磁化率的分析明确区分两条河流的陆源物质。由于受到冷水和暖水的相互作用,巴伦支海-喀拉海海冰变化迅速,并且在全新世中晚期存在 0.4 ka 和 0.95 ka 的变化周期,但海冰变化的影响因素并不是单一的,而是气候系统内部各因子相互作用的结果。目前古海冰重建研究工作主要为定性研究,定量研究相对较少,所选用的重建指标也相对单一,另外存在年代框架差、分辨率低等不足。本文以巴伦支海和喀拉海为中心,总结了其快速气候突变事件、古温度盐度、海平面及海冰的变化,对影响因素进行了探讨,并通过分析末次盛冰期以来古海洋环境研究的不足,提出了相应的展望。  相似文献   

8.
北极地区对全球气候变化非常敏感,是研究古环境和古气候变化的关键区域。东西伯利亚海作为北极重要的边缘海之一,对东西伯利亚陆架和陆坡沉积物来源的研究将有助于加深对北极沉积环境和气候变化的认识。本文通过对东西伯利亚海西部LV77-36岩心沉积物中碎屑组分的主微量、稀土元素进行分析,阐述了各指标随年代的变化特征,并探讨了中全新世以来东西伯利亚海西部碎屑沉积来源的变化及其对古环境演变的响应。结果表明中全新世以来LV77-36岩心沉积物主要来源于勒拿河、因迪吉尔卡河、亚纳河和马更些河的河流输入,以及西伯利亚地台和新西伯利亚群岛的海岸侵蚀物质。与其他古气候参数对比发现,海冰和洋流的变化对源区物质在东西伯利亚陆架的分散和沉积有着重要的影响。全新世晚期由于楚科奇海海冰的增加、西伯利亚沿岸流的减弱和波弗特环流的增强,导致北美端元的物质贡献相较全新世中期有小幅度增加。  相似文献   

9.
基于区域海洋模式ROMS,建立了一个三维非线性斜压浅海模式,考虑了包括径流、风场、海面热交换以及黄渤海环流等因素,研究了夏季8月份黄河入海径流量对黄河口及附近海域环流结构的影响。数值实验较好地佐证了黄河冲淡水的"北偏"现象,并很好的体现了冲淡水对河口附近海域环流结构的影响。数值研究表明:黄河入海径流量对河口附近海域环流结构有显著影响,径流越大冲淡水向北-西北方向偏转越明显,同时流轴中心余流流速也显著增大;莱州湾顺时针环流受黄河入海径流影响显著,径流量越大越不利于该环流的发育和维持,而径流量越小环流越稳定;径流量越大导致河口附近海域表层余流加大,余流垂向梯度得到加强,底部补偿流增强,河口垂向环流越明显。  相似文献   

10.
2011-2014年中国北极物理海洋学的研究进展   总被引:2,自引:1,他引:1  
曹勇  赵进平 《海洋学报》2015,37(11):1-10
过去十几年北极的快速变化以海冰变化为主要特征。然而,在冰-海-气变化系统中海洋起着关键性的作用。海洋是北极变化的关键因素,不仅影响着海冰的融化与冻结等过程,而且是大气变化的主要能量来源。在北极海冰快速变化的背景下,北冰洋的海洋特征也发生了一系列的变化。第四次国际极地年之后我国在北极科学研究中取得了一系列的进展,本文从北冰洋水团、锋面、海流等主要水文现象,以及上层海洋结构等方面,总结了2011-2014年我国在北极物理海洋学方面取得的一系列成果。  相似文献   

11.
Fresh water flowing from the Arctic Ocean via the East Greenland Current influences deep water formation in the Nordic Seas as well as the salinity of the surface and deep waters flowing from there. This fresh water has three sources: Pacific water (relatively fresh cf. Atlantic water), river runoff, and sea ice meltwater. To determine the relative amounts of the three sources of fresh water, in May 2002 we collected water samples across the East Greenland Current in sections from 81.5°N to the Irminger Sea south of Denmark Strait. We used nitrate-phosphate relationships to distinguish Pacific waters from Atlantic waters, salinity to obtain the sum of sea ice melt water and river runoff water, and total alkalinity to distinguish the latter. River runoff contributed the largest part of the total fresh water component, in some regions with some inventories exceeding 12 m. Pacific fresh water (Pacific source water S ∼ 32 cf. Atlantic source water S ∼ 34.9) typically provided about 1/3 of the river runoff contribution. Sea ice meltwater was very nearly non-existent in the surface waters of all sections, likely at least in part as a result of the samples being collected before the onset of the melt season. The fresh water from the Arctic Ocean was strongly confined to near the Greenland coast. We thus conjecture that the main source of fresh water from the Arctic Ocean most strongly impacting deep convection in the Nordic Seas would be sea ice as opposed to fresh water in the liquid phase, i.e., river runoff, Pacific fresh water, and sea ice meltwater.  相似文献   

12.
《Ocean Modelling》2001,3(1-2):127-135
The high-latitude freezing and melting cycle can variously result in haline convection, freshwater capping or freshwater injection into the interior ocean. An example of the latter process is a secondary salinity minimum near 800 m-depth within the Arctic Ocean that results from the transformation on the Barents Sea shelf of Atlantic water from the Norwegian Sea and its subsequent intrusion into the Arctic Ocean. About one-third of the freshening on the shelf of that initially saline water appears to result from ice melt, although the actual sea ice flux is small, only about 0.005 Sv. A curious feature of this process is that water distilled at the surface of the Arctic Ocean by freezing ends up at mid-depth in the same ocean. This is a consequence of the ice being exported southward onto the shelf, melted, and then entrained into the northward Barents Sea throughflow that subsequently sinks into the Arctic Ocean. Prolonged reduction in sea ice in the region and in the concomitant freshwater injection would likely result in a warmer and more saline interior Arctic Ocean below 800 m.  相似文献   

13.
By using the Arctic runoff data from R-ArcticNET V4.0 and ArcticRIMS, trends of four major rivers flowing into the Arctic Ocean, whose climate factor plays an important role in determining the variability of the Arctic runoff, are investigated. The results show that for the past 30 years, the trend of the Arctic runoff is seasonally dependent. There is a significant trend in spring and winter and a significant decreasing trend in summer, leading to the reduced seasonal cycle. In spring, surface air temperature is the dominant factor influencing the four rivers. In summer, precipitation is the most important factor for Lena and Mackenzie, while snow cover is the most important factor for Yenisei and Ob. For Mackenzie, atmospheric circulation does play an important role for all the seasons, which is not the case for the Eurasian rivers. The authors further discuss the relationships between the Arctic runoff and sea ice. Significant negative correlation is found at the mouth of the rivers into the Arctic Ocean in spring, while significant positive correlation is observed just at the north of the mouths of the rivers into the Arctic in summer. In addition, each river has different relationship with sea ice in the eastern Greenland Sea.  相似文献   

14.
Tides are believed to drive vertical mixing in the Arctic Ocean, thereby helping heat to reach the bottom of the sea ice layer, especially in regions with thick ice covers. However, tides are usually not included in ocean models. We investigated the effect of tides on sea ice in the Arctic Ocean using an ice-coupled ocean model that includes tides simultaneously. We found that with tidal forcing, the volume of sea ice increased by 8.5% in Baffin Bay, whereas it decreased by 17.8% in the Canadian Arctic Archipelago. The increase in sea ice volume in Baffin Bay results from the convergence of sea ice, driven by tidal residual currents. In contrast, the decrease in ice volume in the Canadian Archipelago is due to the suppression of ice formation in winter, especially in areas with steep topography, where the vertical mixing of temperature is enhanced by tides. Our results imply that tides should be directly included into the oceanic general circulation model (OGCM) to realistically reproduce the distribution of sea ice in the Arctic Ocean.  相似文献   

15.
Many of the changes observed during the last two decades in the Arctic Ocean and adjacent seas have been linked to the concomitant abrupt decrease of the sea level pressure in the central Arctic at the end of the 1980s. The decrease was associated with a shift of the Arctic Oscillation (AO) to a positive phase, which persisted throughout the mid 1990s. The Arctic salinity distribution is expected to respond to these dramatic changes via modifications in the ocean circulation and in the fresh water storage and transport by sea ice. The present study investigates these different contributions in the context of idealized ice-ocean experiments forced by atmospheric surface wind-stress or temperature anomalies representative of a positive AO index.Wind stress anomalies representative of a positive AO index generate a decrease of the fresh water content of the upper Arctic Ocean, which is mainly concentrated in the eastern Arctic with almost no compensation from the western Arctic. Sea ice contributes to about two-third of this salinification, another third being provided by an increased supply of salt by the Atlantic inflow and increased fresh water export through the Canadian Archipelago and Fram Strait. The signature of a saltier Atlantic Current in the Norwegian Sea is not found further north in both the Barents Sea and the Fram Strait branches of the Atlantic inflow where instead a widespread freshening is observed. The latter is the result of import of fresh anomalies from the subpolar North Atlantic through the Iceland-Scotland Passage and enhanced advection of low salinity waters via the East Icelandic Current. The volume of ice exported through Fram Strait increases by 20% primarily due to thicker ice advected into the strait from the northern Greenland sector, the increase of ice drift velocities having comparatively less influence. The export anomaly is comparable to those observed during events of Great Salinity Anomalies and induces substantial freshening in the Greenland Sea, which in turn contributes to increasing the fresh water export to the North Atlantic via Denmark Strait. With a fresh water export anomaly of 7 mSv, the latter is the main fresh water supplier to the subpolar North Atlantic, the Canadian Archipelago contributing to 4.4 mSv.The removal of fresh water by sea ice under a positive winter AO index mainly occurs through enhanced thin ice growth in the eastern Arctic. Winter SAT anomalies have little impact on the thermodynamic sea ice response, which is rather dictated by wind driven ice deformation changes. The global sea ice mass balance of the western Arctic indicates almost no net sea ice melt due to competing seasonal thermodynamic processes. The surface freshening and likely enhanced sea ice melt observed in the western Arctic during the 1990s should therefore be attributed to extra-winter atmospheric effects, such as the noticeable recent spring-summer warming in the Canada-Alaska sector, or to other modes of atmospheric circulations than the AO, especially in relation to the North Pacific variability.  相似文献   

16.
陈迪  孙启振 《海洋学报》2022,44(12):42-54
本文利用1951?2021年哈德莱中心提供的海冰和海温最新资料以及美国国家海洋和大气管理局气候预报中心提供的NCEP/NCAR再分析资料,分析探讨了北极海冰70余年的长期变化特征,进而研究了其快速减少与热带海温场异常变化之间的联系,揭示了在全球热带海洋海温场变化与北极海冰之间存在密切联系的事实。结果表明,北极海冰异常变化最显著区域出现在格陵兰海、卡拉海和巴伦支海。热带不同海区对北极海冰的影响存在明显时滞时间和强度差异,热带大西洋的影响相比偏早,印度洋次之,太平洋偏晚。热带大西洋、印度洋和中东太平洋海温异常影响北极海冰的最佳时间分别是后者滞后26个月、30个月和34个月,全球热带海洋影响北极海冰的时滞时间为33个月。印度洋SST对北极海冰的影响程度最强,其次是太平洋,最弱是大西洋。全球热带海洋对北极海冰的影响过程中,热带东太平洋和印度洋起主导作用。当全球热带海洋SST出现正(负)距平时,北极海冰会出现偏少(多)的趋势,而AO、PNA、NAO对北极海冰变化起重要作用,是热带海洋与北极海冰相系数的重要“纽带”。而AO、PNA和NAO不仅受热带海洋SST的影响,同时也受太平洋年代际振荡PDO和大西洋多年代际AMO的影响,这一研究为未来北极海冰快速减少和全球气候变暖机理的深入研究提供理论支撑。  相似文献   

17.
The biological pump is a central process in the ocean carbon cycle, and is a key factor controlling atmospheric carbon dioxide (CO2). However, whether the Arctic biological pump is enhanced or reduced by the recent loss of sea ice is still unclear. We examined if the effect was dependent on ocean circulation. Melting of sea ice can both enhance and reduce the biological pump in the Arctic Ocean, depending on ocean circulation. The biological pump is reduced within the Beaufort Gyre in the Canada Basin because freshwater accumulation within the gyre limits nutrient supply from deep layers and shelves hence inhibits the growth of large-bodied phytoplankton. Conversely, the biological pump is enhanced outside the Beaufort Gyre in the western Arctic Ocean because of nutrient supply from shelves and greater light penetration, enhancing photosynthesis, caused by the sea ice loss. The biological pump could also be enhanced by sea ice loss in the Eurasian Basin, where uplifted isohaline surfaces associated with the Transpolar Drift supply nutrients upwards from deep layers. New data on nitrate uptake rates are consistent with the pattern of enhancement and reduction of the Arctic biological pump. Our estimates indicate that the enhanced biological pump can be as large as that in other oceans when the sea ice disappears. Contrary to a recent conclusion based on data from the Canada Basin alone, our study suggests that the biological CO2 drawdown is important for the Arctic Ocean carbon sink under ice-free conditions.  相似文献   

18.
Argo-type profiling float observations under the Arctic multiyear ice   总被引:1,自引:0,他引:1  
To monitor and better understand temperature and salinity conditions in the Arctic Ocean interior, we developed a new Argo-type ocean profiling system for the polar oceans. This Polar Ocean Profiling System (POPS) consists mainly of an ice platform and an Argo-type subsurface CTD profiler. The ice platform includes a system controller that manages all data acquisition, processing, formatting, and messaging. Iridium satellite communication technology sends the observation data and also allows remote commands to be sent from the laboratory to the buoy. The profiler is mounted on an oceanographic cable interfaced to the platform; the profiler moves along the cable between depths of 10 and 1000 m. The inductive modem system provides data transfer between the ice platform and the profiler. In April 2005, field tests of the POPS were conducted in the Arctic Ocean near the North Pole. Later on, commands were sent via Iridium from the laboratory to the buoy to change the data sampling acquisition frequency, allowing us to obtain 14 temperature and salinity profiles during the first 22 days. We confirmed that POPS could measure temperature and salinity with conservative accuracies better than 0.01 °C for temperature and 0.01 for salinity. Following this test, we initiated the observation of the Arctic Ocean from 10 m down to 1000 m depths in April 2006 using POPS, and we also started sending the data to the global telecommunication system (GTS) in real time. These data are the first Argo data sent from the Arctic Ocean. Not only Arctic oceanographers but also everyone who is interested in Arctic oceanographic conditions can easily access these data from the Argo data server.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号