首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the phylogeography of the barnacle Fistulobalanus albicostatus, which inhabits mangroves and estuarine shores in the West Pacific. Differentiation in the mitochondrial cytochrome c oxidase subunit I (COI) and 12S ribosomal RNA (12S) genes of 401 specimens of F. albicostatus was examined in samples from 16 locations in the West Pacific, ranging from Honshu to Southern China. Our results revealed that F. albicostatus comprises two major clades exhibiting a COI divergence ranging from 1.25% to 2.8%. Clade A demonstrated the widest distribution, ranging from Japan to China, and was divided into three subclades occurring in the South China Sea (A1), Okinawa (A2), and Honshu, Korea and Qingdao (A3). Clade B was determined to be endemic to Okinawa; i.e. two endemic lineages occur in this island. Thus, F. albicostatus resembles several inter‐tidal species in having clades that are endemic to Okinawan waters. Nevertheless, in contrast to the rocky inter‐tidal barnacles Tetraclita spp. and Chthamalus malayensis, F. albicostatus was not found to be separated into continental and oceanic populations, but instead is divided into northern and southern clades, probably because of the Yangtze River discharge, which limits gene flow between the northern and southern populations.  相似文献   

2.
Despite the high number of species and ecological diversity of pandalid shrimps, there has been no previous attempt to resolve evolutionary relationships of several genera using molecular tools. Although mitochondrial DNA cytochrome oxidase I (COI) is widely used in barcoding studies to delimit species boundaries, additional insights into phylogenetic affinities can be obtained, especially when used in combination with data from additional genes. The knowledge of molecular diversity is essential to understand phylogenetic relationships and will help systematic clarifications. Based on partial fragments of the 16S and COI genes, we have focused specifically on addressing the systematic relationships of the economically and ecologically important shrimp genus Plesionika within a framework of five genera from within the Pandalidae. Our results showed that species within Plesionika are substantially divergent when compared with other genera, exhibiting the highest average nucleotide divergence, with 0.1123 and 0.0846 in COI and 16S genes, respectively. In addition, sequence divergence was found to vary greatly within the genus Plesionika (COI/16S): 0.0247/0.0016 between Plesionika antigai and Plesionika heterocarpus and 0.1616/0.098 between Plesionika heterocarpus and Plesionika edwardsii. We did not find amino acid sequence divergence between P. heterocarpus and P. antigai compared with P. heterocarpus and P. edwardsii (8.10%, K2P distance). Three species of Plesionika (P. antigai, P. heterocarpus and Plesionika scopifera) appear well separated from other Plesionika species in both maximum likelihood and Bayesian analyses. The present study confirms the utility of COI over 16S as a genetic marker to resolve relationships between different species of Plesionika from the Northeast Atlantic and Mediterranean Sea, in addition to species delimitation. The findings highlight the need to further review paraphyly within Plesionika in an attempt to recognize a concordance in the evolutionary history of Plesionika with major ecological and geological events.  相似文献   

3.
Species of the genus Ophryotrocha are a well‐studied group of organisms but, despite the relatively large body of biological studies, little is known about their intra‐specific patterns of genetic diversity. In the present study, we analysed the patterns of genetic variation in samples of Ophryotrocha labronica (Polychaeta, Dorvilleidae) collected along the Italian coasts within three regions with different thermal regimes: the Northern Adriatic Sea (NAS), the Ligurian Sea (LS), and the South/Southeast Sicilian Sea (SS). A partial sequence of the cytochrome c oxidase subunit I (COI) gene was used as a genetic marker. An analysis of molecular variance (AMOVA) showed significant genetic differentiation between the NAS and the other regions. Conversely, little or no genetic structuring was found between the LS and the SS or amongst locations within a given region. A Bayesian phylogenetic tree and a median‐joining network provided evidence for the occurrence of two highly divergent genetic lineages characterized by a high average sequence divergence (17.2%, Kimura two‐parameter distance). The spatial patterns of genetic variation found in O. labronica may reflect the signature of past expansion events of the two genetic lineages. Although the high sequence divergence suggested that cryptic speciation within O. labronica may have occurred, other traits such as the absence of reproductive isolation, pattern of phenotypic variation and habitat specificity prompted us to regard the two groups as distinct COI lineages of O. labronica.  相似文献   

4.
The widespread mud crab, Scylla serrata, of the Indo‐West Pacific is an excellent model species to demonstrate how the colonization history of a species can be influenced by complex oceanographic conditions. Through the combination of ecological data (fossil records and paleo‐oceanographic conditions) and molecular data (coalescent simulations, network analysis, and nucleotide diversity tests), the phylogeographic history of S. serrata was re‐analyzed. Based on the analysis of mtDNA cytochrome oxidase I sequences, two major clades were identified for S. serrata, including a widespread clade (Clade I) with three disjunct geographic clusters (IA, IB and IC) and an endemic Northwest Australian clade (Clade II). Moreover, a significant phylogeographic structure corresponding to four subpopulations was revealed: Northwest Australia, West Indian Ocean, Red Sea‐South China Sea and West Pacific. A colonization history of a Northwest Australia origin for S. serrata followed by westward transmarine dispersal across the Indian Ocean for Clade I and sequential colonization from the West Indian Ocean to Red Sea‐South China Sea and West Pacific was corroborated. The Pleistocene fluctuations of paleo‐oceanographic conditions including surface circulations and physical topography in the Indo‐West Pacific might be responsible for the wide distribution, colonization history and genetic divergence of this species.  相似文献   

5.
Formation of glacial refugia during the Pleistocene climatic oscillations has been put forward to elucidate the diversification of marine organisms in the north‐western Pacific. The marine gastropod Monodonta labio is one of the most common species in the Northwestern Pacific and possibly possesses cryptic diversity. Here, we investigate the phylogeographic pattern of this species to test the potential mechanisms driving its diversification in the Northwestern Pacific. Genetic information for two mitochondrial genes (Cytochrome oxidase subunit I and 16S rDNA) and one nuclear gene (internal transcribed spacer 1) was acquired to detect genetic structuring and to reconstruct the gastropod's phylogenetic history. Our results revealed that M. labio is comprised of five main clades, and divergence time estimates place their cladogenesis as corresponding to the initiation (c. 2.5 mya) and intensification (c. 0.9 mya) of large‐scale Northern Hemisphere ice sheets. The early and middle Pleistocene divergence times are consistent with the emergence times of the Dongshan land bridge, which would seperate the ancient East China Sea and the ancient South China Sea forming two potential refugia. In addition, the deep trough in the Qiongzhou Strait would possibly act as another potential refugium with the uplift of the Qiongzhou Strait at mid‐Pleistocene. This study suggests that the current genetic architecture of M. labio is probably correlated with glacial isolation and sea surface temperature gradient. We also put forward the possibility that these factors were probably an important driver for the diversification of sister species or subspecies of other taxa in the Northwestern Pacific.  相似文献   

6.
The pleated ascidian Styela plicata (Lesueur, 1823) is a solitary species commonly found in ports and marinas around the world. It has been recorded in the Mediterranean region since the mid‐19th century. In the present work, the species’ genetic diversity was analysed, employing a 613‐bp portion of the mitochondrial cytochrome c oxidase subunit I (COI) gene from 149 individuals collected in 14 ports along Italian coasts at spatial scales ranging from 1 to approximately 2200 km. Haplotype and nucleotide diversity values were = 0–0.933 (total = 0.789) and π = 0–0.145 (total π = 0.0094), respectively. A general southward trend of increasing within‐population genetic diversity was observed. Analysis of molecular variance revealed significant genetic structuring but no significant differences were detected among basins, and no isolation by distance was found. Our data were integrated with the COI sequences available from previous studies and re‐analysed in order to investigate the possible routes of introduction of this ascidian into the Mediterranean Sea. The presence of the two COI haplogroups detected in previous molecular investigations on S. plicata at intercontinental spatial scale was confirmed in the Mediterranean Sea. The results revealed multiple introductions of S. plicata, although some locations appear to have experienced rapid expansion from few founding individuals with reduced genetic diversity. However, continuous introductions would confound the pattern deriving from single founder events and make it difficult to estimate the time needed for gene diffusion into established populations. This mixing of effects creates difficulties in understanding the past and current dynamics of this introduction, and managing this alien invasive ascidian whose genetic structure is continuously shuffled by vessel‐mediated transport.  相似文献   

7.
Sipunculan taxonomy relies on a limited set of external morphological and internal anatomical characters. In addition, this marine group is characterized by an unusual large number of putatively cosmopolitan species. However, this ‘cosmopolitan’ status could be an artifact of their conserved morphology and the small number of unambiguous taxonomic characters available for delimiting species. Species delimitation can therefore be aided by molecular techniques. We investigated the case of the widespread and common species Sipunculus nudus Linnaeus, 1766 to determine its systematic validity. We analysed the morphology of multiple specimens of S. nudus collected from 11 localities around the world and undertook phylogenetic analyses using molecular sequence data from four genes (28S rRNA, 16S rRNA, histone H3 and cytochrome c oxidase subunit I). High levels of genetic differentiation are present between distantly related populations of the putative species S. nudus. Five distinct lineages were identified by phylogenetic analyses, three of which – the best‐represented populations – can be distinguished morphologically. Our phylogenetic and morphological analyses thus do not favor the cosmopolitan status of S. nudus, suggesting instead that it constitutes a complex of morphologically similar but distinguishable species.  相似文献   

8.
The population dynamics and gametogenesis of the non‐indigenous polychaete species Branchiomma luctuosum Grube, 1869 (Annelida, Sabellidae) has been investigated at three sites in the Taranto Seas (Ionian Sea, Mediterranean Sea). The species, probably introduced from the Red Sea, has been reported in the Mediterranean Sea since 1983. The species is hermaphrodite, and the reproductive season is between June and October when the largest mean size of oocytes was recorded together with the presence of mature spermatozoa. Small oocytes are present in specimens reaching about 20–25 mm in length. Therefore oogenesis seems to begin early during the first year of life, but the first reproduction can occur when the worms attain a larger size and are at least 6 months of age. Although most of the individuals reproduce seasonally within a discrete period, some individuals can reproduce in different periods during the year, the oogenesis of individuals not being synchronous. A life span of at least 2 years is highlighted, with a faster growth rate during the first months (about 20 mm per month) decreasing to about 10 mm from the 3rd to the 8th months and slowing down again after the worm reaches 100 mm in size. Some differences in growth performance are discussed, enhanced by comparing the sites located at greater depth (5–7 m) and those located at 0.5 m depth, together with the possible interactions of this alien species with the autochthonous sabellid Sabella spallanzanii.  相似文献   

9.
The calcarean sponge Paraleucilla magna is classified as being an invasive species on the Mediterranean Sea, where it causes economic damages to mollusc farms. On the Brazilian coast, this species is considered to be cryptogenic, and information on its ecology is scarce. The same is true for Sycettusa hastifera, another calcarean sponge with a worldwide distribution. Data on the ecology of these species could help in elucidating their potential to become a threat if they are found to be exotic species in Brazil. In the present work, we studied habitat selection, growth and mortality of early juveniles of P. magna and habitat selection of S. hastifera in a Marine Reserve from Southeastern Brazil, where these species are abundant in the benthic community. Granite plates were used for habitat selection analysis, varying in substrate inclination (vertical and horizontal) and exposure to light and hydrodynamism (exposed and sheltered). To analyse the growth and mortality rates, sponges were mapped and then measured once a week for 10 weeks. If a monitored sponge was not found in the following week, it was considered to be dead. Our results showed that, although P. magna and S. hastifera are capable of inhabiting substrates exposed to different environmental conditions, they showed habitat preferences. Growth of the juveniles of P. magna seemed not to have damaged any neighbouring invertebrates. The mortality of juveniles of this species was higher during the first 2 weeks of life but its causes could not be elucidated.  相似文献   

10.
Penaeus semisulcatus, the green tiger prawn, is an ecologically and economically important penaeid shrimp in the Indo‐West Pacific region, especially in rice‐shrimp farming and capture fisheries in Bangladesh and Sri Lanka, respectively. Genetic variation and phylogeography of samples of this species from Bangladesh and Sri Lanka were studied utilizing different mitochondrial DNA markers, i.e. cytochrome oxidase subunit 1 (CO1), control region (CR) and 16S rRNA genes. No evidence of population structure was observed in Bangladesh, but distinct variations were found among the Sri Lankan samples (ΦST = 0.04, p = .002; FST = 0.07, p = .001), with the western sample differing from the northwestern and southern samples. The Bangladesh population had lower genetic diversity than two of the three Sri Lanka populations. The phylogeography of P. semisulcatus revealed two distinct mitochondrial DNA (mtDNA) lineages, one in the Western Pacific Ocean and second in the Indian Ocean. The Bangladesh samples showed highest levels of similarity with samples from Sri Lanka, India and Malaysia, with the Bangladesh and Sri Lanka populations sharing the most common recent ancestry. Among the Indian Ocean samples, high levels of variation were observed in the samples from Iran, indicating admixture of two distinct mtDNA lineages, one shared by the populations from the Bay of Bengal and the other possibly originating from Eastern Africa. The genetic and phylogeographic information obtained in this study will be useful in appropriate planning for management and conservation of shrimp fisheries in Bangladesh and Sri Lanka, and in the Indo‐West Pacific region.  相似文献   

11.
Marine macrophytes sustain valuable epiphytic biodiversity. Nonindigenous macroalgae may induce changes in composition and structure of epifaunal assemblages and therefore support different assemblages from those associated with native species. In this study, differences in faunal community structure between the introduced fucoid Sargassum muticum and the native seagrass Cymodocea nodosa were tested over a year on an intertidal shallow sandy bottom at the southern introduction front, the El Jadida coastline (NW Morocco). Epifaunal community structure consistently differed between macrophytes through seasons, with more species‐rich assemblages associated with S. muticum than C. nodosa despite comparable abundances. The significantly greater epifauna diversity on S. muticum may be related to its structural complexity. However, the species contributing most to differences in assemblages between both macrophytes, such as Steromphala umbilicalis and S. pennanti, were found on both habitats with temporally varying abundances. Some species‐specific affinities were detected (Stenosoma cf. acuminatum, Elasmopus vachoni, Chauvetia brunnea). Nitrogen, dissolved oxygen, suspended matter and temperature were identified as the best explanatory variables contributing to the observed macroepifaunal patterns. This study provides evidence that S. muticum acts as a favourable and additional habitat for epifaunal species and supports a more diverse epifaunal assemblage in this Moroccan seagrass meadow.  相似文献   

12.
The occurrence of the invasive nonindigenous copepod Oithona davisae Ferrari and Orsi, 1984, is reported for the first time in the Aegean Sea. The data we collected in August 2017 from 14 stations along the Turkish coast of the Aegean Sea reveal the spatial distribution of O. davisae between the openning of the Dardanelles Strait in the north and the Izmir Bay in the south. The O. davisae individuals, in seven mesozooplankton samples collected from a single station, were consistently found in the inner part of the Izmir Bay from April 2015‐October 2016. The abundance of female O. davisae ranged from 4 ind./m3 in April 2015 to 31,524 ind./m3 in July 2016 and contributed to the total oithonid female population by 10.8% in April 2015 and 92.8% in September 2016. Our results show that this species is well established in the inner part of Izmir Bay and that it has become a permanent component of the copepod community in the area.  相似文献   

13.
Size‐frequency distributions can support reliable inferences concerning population dynamics of brachiopods, but only a few data are available so far. In this study, length and width frequency distributions of dead specimens of the Recent brachiopods Joania cordata and Argyrotheca cuneata from the Marine Protected Area ‘Secche di Tor Paterno’, Central Tyrrhenian Sea, Italy (41°35′ N, 12°20′ E), are reported in order to add new data about size‐frequency distributions of brachiopods. The studied specimens came from death assemblages in the coralligenous substrate, in the Posidonia oceanica meadows, and in the sand channels. The observed patterns vary from left‐skewed (J. cordata) to right‐skewed (A. cuneata), indicating respectively a low and high mortality of smaller individuals. Significant differences between the coralligenous substrate and the P. oceanica meadow were observed for both species, revealing a variation among different habitats. All length and width distributions are clearly polymodal, but the biological meaning of the peaks is difficult to interpret, as the two species seem to have a 2‐year life span. A biometric analysis of shell sizes revealed that length and width are the most variable parameters during the growth of the animal.  相似文献   

14.
The invasive ctenophore Mnemiopsis leidyi (Agassiz), which was transported from the Black Sea into the Caspian Sea at the end of the 1990s, has negatively affected the ecosystem of the Caspian Sea. Zooplankton abundance, biomass and species composition were evaluated on the Iranian coast of the Caspian Sea during 2001–2006. A total of 18 merozooplankton (13 species composed of larvae of benthic animals) and holozooplankton (four Copepoda and one Cladocera) species were identified. The total number of zooplankton species found here was 50% less than in a previous investigation performed in the same region in 1996 before the introduction of Mnemiopsis leidyi into the Caspian Sea. Cladocera species seemed to be highly affected by the invasion of Mnemiopsis leidyi; only one species, Podon polyphemoides, remained in the study area, whereas 24 Cladocera species were found in the study carried out in 1996. Whereas among the Copepoda Eurytemora minor, Eurytemora grimmi, Calanipeda aquae dulcis and Acartia tonsa that were abundant before the Mnemiopsis leidyi invasion, only A. tonsa (copepodites and adults) dominated the inshore and offshore waters after the invasion. The maximum in zooplankton abundance (22,088 ± 24,840 ind·m?3) and biomass (64.1 ± 56.8 mg·m?3) were recorded in December 2001 and August 2004, respectively. The annual mean zooplankton abundance during 2001–2006 was in the range of 3361–8940 ind·m?3; this was two‐ to five‐fold less than the zooplankton abundance in 1996. During 2001–2006, the highest abundance and biomass of Mnemiopsis leidyi were observed during summer‐autumn months coincident with warm temperatures and generally when the abundance of other zooplankton organisms was low.  相似文献   

15.
Despite the wide distribution of zoanthids, little is known about their pattern of reproduction. Here we investigate the reproductive biology of two Mediterranean species, the common Parazoanthus axinellae (Schmidt) and the rare Savalia savaglia (Bertoloni). For both species, samples were collected during an annual cycle, from January to December 2005, in the Western Mediterranean (Ligurian Sea, Italy). Both species are gonochoric. In P. axinellae the sex‐ratio (n colonies = 30) showed a slight predominance of male colonies (M/F = 1.35), whereas in the population of S. savaglia (n colonies = 15) a predominance of females was found (M/F = 0.3). In P. axinellae the first gametocytes were visible in March, whereas in S. savaglia they became visible in May. Both species reproduce at the end of autumn when seawater temperature begins to decrease. Parazoanthus axinellae (10 m depth) spawns eggs and sperms in November, whereas S. savaglia (67 m depth) spawns in December. In P. axinellae sexes were segregated on a rocky wall, with males occurring deeper, whereas male and female colonies of S. savaglia were irregularly dispersed in the population. The maximum number of oocytes differed between the species, being higher in P. axinellae than in S. savaglia.  相似文献   

16.
The aim of this study was to investigate whether coral photosynthetic efficiencies and recovery processes are affected by CO2‐driven ocean acidification in symbiont photosynthesis and coral calcification. We investigated the effects of five CO2 partial pressure (pCO2) levels in adjusted seawater ranging from 300 μatm (pre‐industrial) to 800 μatm (near‐future) and strong and weak light intensity on maximum photosynthetic efficiency and calcification of a branching coral, Stylophora pistillata, as this species has often been used in rearing experiments to investigate the effects of acidified seawater on calcification and photosynthetic algae of corals. We found that, the photosynthetic efficiencies and recovery patterns under different light conditions did not differ among pCO2 treatments. Furthermore, calcification of S. pistillata was not affected by acidified seawater under weak or strong light conditions. Our results indicate that the photosynthetic efficiency and calcification of S. pistillata are insensitive to changes in ocean acidity.  相似文献   

17.
Sexual reproduction of zooxanthellate scleractinian corals in the Eastern Tropical Pacific (ETP) is influenced by the interactive effects of regional and local oceanographic conditions, as well as a variety of other environmental factors. Differences in spatial and temporal gamete development and reproductive patterns of three widespread scleractinian corals of this region—Pocillopora damicornis (branching colony morphology, characterized as hermaphrodite broadcaster), Pavona gigantea (massive colonies, characterized as gonochoric broadcaster/sequential co‐sexually hermaphroditic) and Porites panamensis (encrusting colonies, characterized as gonochoric brooder)—were evaluated at local and regional scales across the ETP. This area extended from the Gulf of California (24°N) to the southern coast of Ecuador (–1°S), including offshore islands, using existing data pooled from prior studies. Predictive models were employed based on environmental variables: sea surface temperature, daylight hours, diffuse attenuation co‐efficient at 490 nm and photosynthetically active radiation. Datasets were extracted from satellite images ( https://oceancolor.gsfc.nasa.gov ) and analysed using WAM_STATIST ver. 6.33® software to obtain monthly average data from each site. The spatial (region, sub‐region and site) and seasonal (wet, dry) variation in reproductive activity (% colonies with gametes) differed among the three species; significant interactions were season × sub‐region for P. damicornis, season × site (sub‐region) for P. gigantea, and season × site for P. panamensis, for which sub‐region was not considered as a factor. The predictive models also suggest that gamete production/maturation of P. damicornis and P. gigantea is influenced by local differences in sea surface temperature and daylight hours. Porites panamensis was not correlated with any environmental variable examined. Variations in local and regional reproductive developmental patterns are likely an acclimatization response by each species imposed by the timing and duration of local stressor events. This analysis has provided insights into the diverse local and regional physical drivers that affect species responses and acclimatization in sexual reproduction across the ETP.  相似文献   

18.
19.
Although several studies have evaluated the genetic structure and phylogeographic patterns in many species of marine invertebrates, a general model that applies to all of them remains elusive. For example, some species present an admixture of populations with high gene flow, whereas others exhibit more complex patterns characterized by small‐scale unstructured genetic heterogeneity, even at a local scale. These differences are thought to be due to clear biological aspects such as direct versus indirect development, or the presence of lecithotrophic versus planktotrophic larvae, but few studies compare animals with similar distributions and life modes. Here, we explore the phylogeographic and genetic structure patterns in two chiton (Chiton olivaceus and Lepidopleurus cajetanus) and one abalone (Haliotis tuberculata) species co‐occurring in the same habitat. Samples were obtained from shallow rocky bottoms along the Iberian Peninsula (Atlantic and Mediterranean coasts), Italy, Croatia and Greece, and the mitochondrial markers COI and 16S rRNA gene were sequenced. Our data show evidence of admixture and population expansion in C. olivaceus and H. tuberculata, whereas L. cajetanus exhibited a ‘chaotic patchiness’ pattern defined by a high genetic variability with locality‐exclusive haplotypes, high genetic divergence, and a lack of geographic structure. Shared haplotypes were sampled in both coasts of Iberia (for H. tuberculata) and in the Western and Eastern Mediterranean (for C. olivaceus), potentially indicating high dispersal ability and a recent expansion. The processes underlying the fine‐scale structuring in L. cajetanus remain a mystery. These results are especially interesting because the reproductive mode of the two chitons is similar but differs from that of the abalone, with a veliger larva, while instead the genetic structure of C. olivaceus and H. tuberculata are similar, thus contrasting with predictions based on the life history of the three molluscs and showing that the genetic patterns of marine species may be shaped by many factors, including historical ones.  相似文献   

20.
Jellyfish blooms are unpredictable, unsustainable events, frequently affecting aquatic ecosystems severely. Of particular interest are the consequences of environmental change for jellyfish populations, especially in semi‐enclosed habitats. Regional and seasonal changes in water chemistry and physics may control the distribution of sessile polyps in the Baltic Sea, hence potentially driving the population dynamics of the two abundant medusa species Aurelia aurita and Cyanea capillata (Scyphozoa, Cnidaria). In laboratory experiments, settlement, growth, survival and physiological condition of A. aurita polyps were investigated at different levels of water temperature, pH and salinity. Survival and physiological condition of C. capillata polyps were examined after exposure to low salinity levels. Increased settlement of A. aurita planula larvae was observed on substrate plates at low temperature (4°C), low pH (7.4) and low salinity (7.5 psu), whereas early polyp growth was constrained by salinity ≤10 psu. Aurelia aurita polyps were in good physiological condition over the whole temperature range, while exposure to pH <6.5 led to stepwise tissue degradation. Salinity reduction to ≤5 and ≤8 psu caused irreversible degeneration of A. aurita and C. capillata polyps, respectively. Observed physiological limits suggest distribution of polyp populations of A. aurita in central and of C. capillata in western parts of the Baltic Sea, while future climate changes may particularly restrict occurrence of the less tolerant C. capillata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号