首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 766 毫秒
1.
The author reviews his study on generation mechanism of a shallow sea front and its variabilities awarded the Okada Prize of the Oceanographical Society of Japan for 1991. A new physical model is proposed for frontogenesis (nonhydrostatic model) in a shallow sea such as the Kii Channel during winter. This model retains the vertical acceleration term in momentum equation to simulate properly phenomena of a large aspect-ratio in the frontal region, such as gravitational convection induced by surface cooling. Numerical experiments are carried out to examine the validity of the model by using vertically two-dimensional model basin. Gravitational convection induced in the frontal region strengthens the horizontal convergence to form a remarkable front comparable to the observed one and that this effect of convection surpasses that of a tenfold cooling rate in a usual model adopting the hydrostatic approximation. It is also found that sharpness of front largely depends on horizontal eddy viscosity (diffusivity). Water exchange process caused by fluctuations of front is examined by tracking numerous labeled particles. Gravitational convection also plays an important role in this process by producing a large Lagrangian drift in the frontal region.  相似文献   

2.
Constant flows, as well as oscillatory tidal flow, play an important role in the long-term dispersion of water in the Seto Inland Sea. Two kinds of numerical model (1-line and 2-line models) of the Seto Inland Sea have been developed to determine the role of density-induced currents, one type of the constant flow, in water dispersion in the Inland Sea. The seasonal variations of temperature, salinity and density fields are simulated and the density-induced current field is predicted at the same time. It is found that the most appropriate value of the longitudinal eddy diffusion coefficient,K x, is 5×106–7×106 cm2sec–1. The value of the overall mean dispersion coefficient is of the order of 107cm2sec–1 (Hayami and Unoki, 1970). Consequently, it is suggested that 50–70% of the total dispersion in the Seto Inland Sea can be attributed to currents other than density-induced currents,i.e., tidal currents, tide-induced currents and wind-driven currents.In winter, both density and velocity fields, calculated using the 1-line model, satisfy the conditions for the existence of a coastal front in Kii Channel and in the eastern Iyo-nada.  相似文献   

3.
Episodic outflow of suspended sediments from the Kii Channel to the Pacific Ocean in winter was observed by the sediment traps experiment above the shelf slope. When the current speed was weak and its direction was south or southwestward above the shelf slope the sinking sediment flux was nearly zero but the sinking sediment flux increased to 22g m–2 day–1 after the current speed was strong, its direction changed to south-west or westward and water temperature fell. Such intermitten sinking sediment flux above the shelf slope is considered to be related to the intermittent intrusion of the turbid and cold shelf water into the sub-surface layer of the transparent and warm slope water. Such episodic events may play a very important role in the material transport from the coastal sea to the open ocean.  相似文献   

4.
We have studied nitrogen and phosphorus distributions across the thermohaline front in Kii Channel in winter by using engine-cooling sea water of a ferry boat. On Dec. 1986 and Jan. 1987, differences of PO4–P and DIN across the front are recognized. Especially in the latter case, differences of nutrients concentrations across the front are very obvious. But differences of nutrients across the front on Feb. 1986, Feb. and Mar. 1987 are not obvious. Inspite of winter,Akashiwo had happened in Osaka Bay, nutrients mostly have already been utilized by phytoplankton in inner part of Osaka Bay. Consequently, differences of nutrients concentrations across the front are nearly zero.  相似文献   

5.
In order to determine quantitatively the reason for the high productivity in the Oyashio Region, which is the southwest part of the Pacific Subarctic Region, the annual-mean vertical circulation of nitrogen in the region was estimated from the vertical profiles of nitrate, dissolved oxygen and salinity, and sediment-trap data by adapting them to the balance equations. Estimates of the upwelling velocity (1.7×10−5cm sec−1) and the vertical diffusivity (2.1 cm2 sec−1) in the abyssal zone and the primary and secondary productivities (44 and 4 mgN m−2day−1, respectively) in the euphotic zone were close to those of previous works. The estimated vertical circulation of nitrogen strongly suggested that, since the divergence (5 mgN m−2day−1) is caused by the abyssal convergence (6 mgN m−2day−1) and the positive precipitation, the local new production (22 mgN m−2day−1) necessarily exceeds not only the sinking flux (10 mgN m−2day−1) itself but also the sum of the sinking flux and the downward diffusion of dissolved and particulate organic matter (7 mgN m−2day−1) produced probably in the euphotic zone. The important roles of the abyssal circulation, the winter convection, and the metabolic activity in the bathyal zone to support the high productivity in the euphotic zone were clarified quantitatively.  相似文献   

6.
Since 1960 when I was a senior student, I have studied natural phenomena observed in the hydrosphere and atmosphere by means of chemical elements. Each of the phenomena is, in general, very complicated and so I have attempted to depict the whole picture of material circulation in the marine environment by studying its various aspects at the same time. My chief strategy has been to use natural radio-nuclides as clocks of various phenomena, and to use sediment traps for the determination of vertical fluxes in the ocean. The many results I have obtained can be summarized as follows. 1. I have found that several sporadic events control the material exchange through the atmosphere. These include the strong winter monsoon and typhoons that transport sea-salt particles to the Japanese Islands, theKosa episodes that transport soil dust to the ocean, and storms that result in exchange of sparingly soluble gases such as oxygen and carbon dioxide at the air-sea interface. I have also proved quantitatively that the source of aluminosilicate material in pelagic sediments is air-borne dust. 2. I have proposed a model,Settling model, for the removal of chemical substances from the ocean and found various lines of evidence supporting the model. This model predicts the reversibility in the existing state of insoluble chemical elements in seawater among large settling particles, small suspended particles and colloidal particles that pass through a membrane filter and explains well their behavior in the ocean. I have first precisely measured calcium and iodine in the ocean and have explained their distributions on the basis of the solution and redox equilibria. 3. Using chemical tracers, I have estimated the vertical eddy diffusion coefficients to be 1.2 cm2sec−1 for the Pacific deep water, 0.5 cm2sec−1 for the deep Bering Sea water and 3–80 cm2sec−1 for the Pacific surface water, and have studied the structure of water masses in the western North Pacific and the Sea of Japan. I have also invented and applied a method for the calculation of the age of deep waters using radiocarbon. 4. I have calculated the rates of decomposition of organic matter and the regeneration rates of chemical components in the deep and bottom waters as well as coastal waters by modelling water circulation and mixing. Particulate fluxes and regeneration rates are larger in the deep waters beneath the more biologically productive surface waters. I have stressed the role of silicate in the marine ecosystem, especially in the succession of phytoplankton species. 5. I have quantitatively studied the migration of chemical elements during the early diagenesis of bottom sediments especially manganese using chemical and radiochemical techniques. Manganese is being actively recycled not only in coastal seas but also in pelagic sediments except in the highly oligotrophic subtropical ocean. This recycling can explain the formation of manganese nodules and enables us to balance the manganese budget in the ocean.  相似文献   

7.
From 1980 to 1995, in August, the bottom layer of Osaka Bay was occupied by cold, nutrient-rich water compared with that observed during both previous and subsequent decades. To investigate the mechanisms for the intrusion of bottom-layer cold water into Osaka Bay, the intrusion into Osaka Bay via the Kii Channel is simulated using a finite-volume coastal ocean model with unstructured triangular cell grids. The initial conditions, boundary conditions, and surface temperature given to the model are obtained from daily reanalysis data provided by the Japan Coastal Ocean Predictability Experiment. The model shows that cold water uplifted on the eastern side of the Kii Peninsula is propagated westward at 1.0 m/s as a coastal boundary current; it reaches the Kii Channel mouth when the Kuroshio axis is located around 74 km south of Cape Shionomisaki. However, the modeled cold water mass at the Kii Channel mouth does not intrude further to the north of the Kii Channel; therefore, another mechanism is required to explain the cold-water intrusion into the bottom layer of Osaka Bay. A plausible explanation is the estuarine circulation established by the freshwater supply at the bay head. When the river runoff is included in the model without forced vertical mixing, the temperature in Osaka Bay decreases 6.6 days later than the temperature decreases at the Kii Channel mouth. Furthermore, the shoreward current speed in the bottom layer of the modeled estuarine circulation is 15 cm/s, which provides the mechanism required for the cold water mass to pass the Kii Channel.  相似文献   

8.
The determination of dissolved Mn in sea water was carried out using a Chelex 100 resin and graphite furnace atomic absorption spectrophotometer. The nearshore surface layer waters off the Straits of Kii had the highest Mn concentration of 6.40 n mol kg−1 at these stations. Mn concentration of intermediate and deep water off the Straits of Kii ranged between 0.18 and 1.42 n mol kg−1. Mn concentration in deep and bottom waters at the Mariana Trough were between 0.71 and 2.48 n mol kg−1. Sharp increases of Mn concentration near the bottoms were observed at two stations near the hydrothermal vents of the central ridge of the Mariana Trough.  相似文献   

9.
The studies were carried out on September 27–30, 2007, in the area of the Ob estuarine frontal zone and over the adjacent inner Kara Sea shelf. Based upon the latitudinal changes in the salinity, the 100 nautical mile wide estuarine frontal zone was marked out. The frontal zone was inhabited by a specific zooplankton community dominated by species that occurred outside the frontal zone in only minor amounts. The biomass of the mesozooplankton averaging 984 mg/m3 in the frontal zone exceeded by 1.5 and 6 times the corresponding values in the inner desalinated area of the estuary and the adjacent areas of the Kara Sea shelf. At the inner southern periphery of the frontal zone, at maximal latitudinal salinity gradients (>2 psu per mile), the maximal development of the mesoplankton with the mean biomass for the water column of 3.1 g/m3 (37 g/m2) and up to 5.8 g/m3 in the subpycnocline layer was observed. The latitudinal extension of the biomass in the maximum zone did not exceed 10 miles. More than 90% of the maximum was composed of herbivorous zooplankton with the strong domination of the copepod Limnocalanus macrurus. The daily consumption within the zooplankton maximum area was estimated at 820 mgC/m2 per day. This value exceeds by two orders of magnitude the local primary production. At that level of consumption, the available phytoplankton biomass was consumed by grazers in less than 8 hours (!). A zooplankton aggregation at the southern periphery of the estuarine front exists due to the advection of phytoplankton from the adjacent river zone. The aggregation forms a natural pelagic biofilter where new allochthonous organic matter delivered by the river flow is accumulated and high secondary production is formed on its basis. An anomalously high concentration of planktic predatory Parasagitta elegans with biomass of over 1 g/m3 (46% of the total zooplankton biomass) was associated with the outer northern periphery of the estuarine frontal zone.  相似文献   

10.
The path of the Kuroshio in Sagami Bay was surveyed through drifter tracking from Oshima-West Channel to Oshima-East Channel. A subsurface drifter with a drogue at 300 m depth flowed around Oshima from Oshima-West Channel to Oshima-East Channel. A difference in flow directions between the upper and lower layers was apparent in the northwest of Oshima. Flow directions there were shown to change from north in the surface layer to east in the bottom layer, and this was confirmed with moored currentmeters.A profile of northward current velocity was estimated from measurements in six layers with currentmeters deployed in the Oshima-West Channel. The profile shows a core of northward flow along the eastern bottom slope and a weak southward flow along the western bottom slope. Volume transport of the Kuroshio into Sagami Bay was estimated to be 1.8×106m3sec–1 from the profile.Long-term current measurement showed that southward flows were observed in Oshima-West Channel in July 1977, May 1978 and April 1979. Cold or warm water masses appearing south of the Izu Peninsula are suggested to have caused the changes.Displacement of the cold water mass in July 1977 is discussed on the basis of current measurements and offshore oceanographic conditions.  相似文献   

11.
Chlorophyll a of total and particles retained on 30 μm mesh plankton net were both determined in surface waters along two cruise tracks ranging from the Subtropical water to the marginal ice zone in the Pacific sector of the Southern Ocean in austral summer. Total surface chlorophyll a in the study area was mostly less than 1 μg chl a 1−1, and showed distributions with no obvious trend associated with different waters masses of the Antarctic and the Subantarctic, although total chlorophyll a concentrations changed greatly within each water mass. Particularly low concentrations of chlorophyll a were detected in the marginal ice zone. Chlorophyll a contained in 30 μm netplankton made up 5∼60% of total chlorophyll a: large near the marginal ice zone and becoming small with travel towards the north. High percentage shares of netplankton chlorophyll a were confirmed even in low total chlorophyll a concentrations in summer in the Southern Ocean. A positive relation was observed between the percentage of 30 μm netplankton and the “average total chlorophyll a”, although there was great scatter. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
We have carried out a small-scale (∼20 l) CO2 sequestration experiment off northern California (684 m depth, ∼5°C, background ocean pH ∼7.7) designed as an initial investigation of the effects of physical forcing of the fluid, and the problem of sensing the formation of a low pH plume. The buoyant CO2 was contained in a square frame 1.2 m high, exposing 0.21 m2 to ocean flow. Two pH electrodes attached to the frame recorded the signal; a second frame placed 1.9 m south of the CO2 pool was also equipped with two recording pH electrodes. An additional pH electrode was held in the ROV robotic arm to probe the fluid interface. Local water velocities of up to 40 cm sec−1 were encountered, creating significant eddies within the CO2 box, and forcing wavelets at the fluid interface. This resulted in rapid CO2 dissolution, with all CO2 being depleted in a little more than 2 days. The pH record from the sensor closest (∼10 cm) to the CO2 showed many spikes of low pH water, the extreme value being ∼5.9. The sensor 1 m immediately below this showed no detectable response. The electrodes placed 1.9 m distant from the source also recorded very small perturbations. The results provide important clues for the design of future experiments for CO2 disposal and biogeochemical impact studies. These include the need for dealing with the slow CO2 hydration kinetics, better understanding of the fluid dynamics of the CO2-water interface, and non-point source release designs to provide more constant, controlled local CO2 enrichments within the experimental area. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We utilized 234Th, a naturally occurring radionuclide, to quantify the particulate organic carbon (POC) export rates in the northern South China Sea (SCS) based on data collected in July 2000 (summer), May 2001 (spring) and November 2002 (autumn). Th-234 deficit was enhanced with depth in the euphotic zone, reaching a subsurface maximum at the Chl-a maximum in most cases, as commonly observed in many oceanic regimes. Th-234 was in general in equilibrium with 238U at a depth of ∼100 m, the bottom of the euphotic zone. In this study the 234Th deficit appeared to be less significant in November than in July and May. A surface excess of 234Th relative to 238U was found in the summer over the shelf of the northern SCS, most likely due to the accumulation of suspended particles entrapped by a salinity front. Comparison of the 234Th fluxes from the upper 10 m water column between 2-D and traditional 1-D models revealed agreement within the errors of estimation, suggesting the applicability of the 1-D model to this particular shelf region. 1-D model-based 234Th fluxes were converted to POC export rates using the ratios of bottle POC to 234Th. The values ranged from 5.3 to 26.6 mmol C m−2d−1 and were slightly higher than those in the southern SCS and other oligotrophic areas. POC export overall showed larger values in spring and summer than in autumn, the seasonality of which was, however, not significant. The highest POC export rate (26.6 mmol C m−2d−1) appeared at the shelf break in spring (May), when Chl-a increased and the community structure changed from pico-phytoplankton (<2 μm) dominated to nano-phytoplankton (2–20 μm) and micro-phytoplankton (20–200 μm) dominated.  相似文献   

14.
Heat and salt balances in the Seto Inland Sea   总被引:1,自引:0,他引:1  
Seasonal variations of heat and salt balances are estimated in the Seto Inland Sea with the use of a numerical experiment.The surface effect is dominant with respect to the heat balance. In spring, however, the effect of the horizontal heat transport is the same as or greater than that of the surface heating (or cooling). Annual mean heat transport is 85 cal cm–2 day–1 (356 J cm–2 day–1) which is supplied from the open ocean and lost through the sea surface in the Inland Sea as a whole. Because of the shallow water depth, heat is supplied through the surface and carried out by the horizontal heat transport in Hiuchi- and Bingo-nada in the annual mean. The heat transport has the opposite sense to that in the whole Seto Inland Sea and annual mean transport is negative (–10 cal cm–2 day–1,i.e., –42 J cm–2 day–1).The salt balance is primarily controlled by the river discharge and the surface effect (precipitation) in June and July. In the other months, the effects of horizontal salt transport, of river inflow and of sea surface exchange (especially of the evaporation in autumn) are comparable to each other. In the Bungo Channel the river effect is relatively small. Osaka Bay and the Kii Channel are characterized by a smaller surface effect.Contribution No. 446 from Tohoku Regional Fisheries Research Laboratory.  相似文献   

15.
象山港水交换数值研究 Ⅱ.模型应用和水交换研究   总被引:25,自引:4,他引:21  
使用水平二维对流-扩散型水交换模式模拟研究了象山港的水交换,对不同区域的水交换控制机理作了初步探讨,象山港水交换状况与其控制机制的区域性变化很大。牛鼻水道至佛渡水道是一个潮流较强的潮通道;90%水交换周期为5天左右。象山港狭湾内水交换周期较长,湾顶处90%水交换的周期约为80天左右。  相似文献   

16.
Observations were made to study the oceanographic structure of the dense water formation and its outflow from Funka Bay, Hokkaido, during early spring. The winter Funka Bay water, which was transformed from the warm water of the Tsugaru Current, due to cooling and deep convection during the winter, flowed from the bay, while forming a frontal structure. The width and inclination of the density front were about 3 n. miles and 1.4×10?2, respectively, during the early spring of 1982. These values roughly coincided with calculated values of 2.6 n. miles and 1.7×10?2 using the sill flow model proposed by Whiteheadet al. (1974). Observed current speeds and directions were also similar to those predicted by the model. The renewal time of bay water with this flow was estimated to be about 51 days, which is consistent with the results of previous studies.  相似文献   

17.
More than 14,000 measurements of surface water xCO2 were obtained during two cruises, 3 weeks apart in June 2000, along 155°E between 34 and 44°N in the western North Pacific Ocean. Based on the distributions of salinity and sea surface temperature (SST), the region has been divided into 6 subregions; Oyashio, Oyashio front, Transition, Kuroshio front, and Kuroshio extension I and II zones, from north to south. The surface waters were always undersaturated with respect to atmospheric CO2. The Oyashio water was the least undersaturated: its xCO2 decreased slightly by 7 ppm, while SST increased by 2°C. The xCO2 normalized to a constant temperature decreased considerably. In the two frontal zones, a large drawdown of 30–40 ppm was observed after 18–19 days. In the Kuroshio extension zones, the xCO2 increased, but the normalized xCO2 decreased considerably. The Transition zone water may be somewhat affected by mixing with the subsurface water, as indicated by the smallest SST rise, an undecreased PO4 concentration, and a colder and less stable surface layer than the Oyashio front water. As the uncertainty derived from the air-sea CO2 flux was not large, the xCO2 data allowed us to calculate the net biological productivity. The productivities around 60 mmol C m−2d−1 outside the Transition zone indicate that the northwestern North Pacific, especially the two frontal zones, can be regarded as one of the most productive oceans in the world.  相似文献   

18.
Using time series of hydrographic data in the wintertime and summertime obtained along 137°E from 1971 to 2000, we found that the average contents of nutrients in the surface mixed layer showed linear decreasing trends of 0.001∼0.004 μmol-PO4 l−1 yr−1 and 0.01∼0.04 μmol-NO3 l−1 yr−1 with the decrease of density. The water column Chl-a (CHL) and the net community production (NCP) had also declined by 0.27∼0.48 mg-Chl m−2 yr−1 and 0.08∼0.47 g-C-NCP m−2 yr−1 with a clear oscillation of 20.8±0.8 years. These changes showed a strong negative correlation with the Pacific Decadal Oscillation Index (PDO) with a time lag of 2 years (R = 0.89 ± 0.02). Considering the recent significant decrease of O2 over the North Pacific subsurface water, these findings suggest that the long-term decreasing trend of surface-deep water mixing has caused the decrease of marine biological activity in the surface mixed layer with a bidecadal oscillation over the western North Pacific.  相似文献   

19.
Every year, the during springtime heating conditions, the seasonal thermal frontal zone appears in Lake Ladoga. It features high horizontal water temperature gradients. The coastal waters, stably stratified in density, interact with the waters of the open lake that are unstably stratified because of the free convection developing in the temperature range between 0°C and the maximum density of the water at 4°C. In Lake Ladoga, the advance of the vernal frontal zone lasts about 7?C8 weeks from mid-May to the beginning of July. Both the water temperature and air temperature distributions over the water??s surface show that large spatial temperature ranges exist in the vernal front reaching more than 11°C. We investigated the spatial horizontal gradients of the water??s surface and the air temperature using a spatial grid with a resolution of 5 km. The surface water temperature and the air temperature gradients were compared with each other as well as with the temperatures in the region of varying depths. During the spring peak of the frontal activity in Lake Ladoga, most of the fronts feature mean temperatures greater than 4°C. This indicates that the thermal bar marks the offshore edge of the most extensive frontal zone.  相似文献   

20.
A high-frequency (1.2 MHz) four-beam Acoustic Doppler Current Profiler (ADCP) moored on the sea bottom was used for the direct measurements of the turbulence parameters in the shallow (20 m) coastal zone of the eastern English Channel. The measurements were as long as four tidal cycles during the period of the spring tide development. The measurements in the ocean and estimates showed that the Reynolds stress variability coincided with the semidiurnal tide. Their maximum values during the flood phase were approximately 1.5 Pa, while, during the ebb phase, they reached −1.2 Pa. The variations of the turbulence’s kinetic energy (TKE) and the rate of its production (P) coincided with the period of the tidal harmonic M4. Their maximum values were found during the flood phase near the bottom, and they were approximately equal to 0.03 m2/s2 and 0.8 W/m3, respectively. These values decreased rapidly with the distance from the bottom. During the periods of low stagnant water, the values of TKE and P in the water column decreased to the minimum values (2 × 10−3 m2/s2 and 3 × 10−5 W/m3, respectively), which coincided with the moment of the current’s reversal flow. The results demonstrated the dominating role of the tidal motion, which controls the structure and intensity of the turbulence in the bottom layer, and revealed the characteristic asymmetry of its distribution related to the nonlinear character of the tidal cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号