首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
RCP4.5情景下预测21世纪南海海平面变化   总被引:3,自引:1,他引:2  
张吉  左军成  李娟  陈美香 《海洋学报》2014,36(11):21-29
结合卫星高度计资料和SODA温盐数据,本文利用CCSM(Community Climate System Model version4)气候系统模式在代表性浓度路径RCP4.5情景下对全球海平面变化趋势的预测模拟结果作为强迫场,用POP模式模拟预测21世纪南海海平面长期趋势变化及空间分布。模拟结果显示,在RCP4.5情景下,南海海域在21世纪末10年平均海平面相对于20世纪末10年上升了15~39cm,明显上升海域位于中南半岛东部的南海中部、南部海域和吕宋海峡东西两侧海域,上升值最大可达39cm。如果加上格陵兰和南极等陆地冰川融化的影响,21世纪南海总海平面上升值将可能达到35~75cm。南海比容海平面明显上升区域位于吕宋岛东面的深水海域,广东沿岸流和吕宋冷涡之间海域,以及中南半岛东南部海域。总比容海平面的变化主要来自热比容,盐比容贡献比较小。南海南部和西部比容海平面上升速率较低,如加里曼丹岛西北侧、泰国湾和海南岛西侧有下降趋势。  相似文献   

2.
气候变化在世界范围内产生重要影响,其中之一即海平面变化。观测记录表明全球平均海平面在21世纪以来呈现加速上升趋势,海平面上升引发一系列的海岸带灾害,影响沿海地区的社会经济发展。本文回顾了海平面变化研究的前沿动态,介绍了海平面观测的不同手段及其特点,分别从全球、区域和中国几个空间尺度阐述了海平面变化事实的最新研究进展及我们的研究成果,给出了中国沿海全海域及各海区海平面的长期变化趋势,并在此基础上对未来海平面的变化幅度进行了预测,给出了全球和中国近海及沿海未来不同时期的海平面上升预测值,对沿海地区科学应对气候变化及海平面上升影响有一定的参考意义。  相似文献   

3.
利用1979—2021 年的 ERA5 再分析资料,采用经验正交函数分解法、Mann-Kendall 趋势检验法等统计方法,对“21 世纪海上丝绸之路”相关海区的海表风场与风能密度的空间分布特征、季节变化特征以及长期变化趋势进行分析。结果表明:(1)研究海域风能密度在不同季节表现出很大的空间差异,夏季的阿拉伯海和孟加拉湾,冬季的中国南海,以及全年的热带南印度洋风能资源都极为丰富。(2)研究时段内,中国南海北部及附近海域、阿拉伯海西部、孟加拉湾西部以及热带西北印度洋风能密度等级整体较高。(3)研究海域的风能密度以年变化特征为主,其中中国南海风能密度的季节变幅最大且在春、秋两季表现出明显的转换特征。(4)在研究海区中,结合水深条件与风能密度时空变化特征的评估结果,可以重点关注台湾海峡、吕宋海峡、中南半岛东南沿海、阿拉伯海西部近岸海域及热带西北印度洋近岸大陆架海域风能资源的开发利用,加强其他海域风能资源的储备。此研究可为“21 世纪海上丝绸之路”风能资源的中长期开发规划提供依据。  相似文献   

4.
IPCC气候情景下全球海平面长期趋势变化   总被引:5,自引:1,他引:4  
利用CCSM3 (Community Climate System Model version 3)气候系统模式模拟20世纪海平面变化,在IPCC SRES A2 (IPCC,2001)情景假设下预测21世纪全球海平面长期趋势变化。模拟显示20世纪海平面上升约4.0 cm,且存在0.004 8 mm/a2的加速度,这个结果仅为热盐比容的贡献。在A2情景假设下,21世纪海平面上升存在很大的区域特征,呈纬向带状分布;总体上北冰洋上升大,南大洋高纬度海区上升小,大西洋上升值比太平洋的大;整个21世纪全球平均比容海平面上升了约30 cm,且呈加速上升的趋势。同时发现,中深层水温度和盐度变化对区域比容海平面变化具有重要贡献。北太平洋增暖主要集中在上层700 m以内,而北大西洋的增暖可达2 500 m的深度,南大洋南极绕极流海区热盐变化则是发生在整个深度。  相似文献   

5.
21世纪以来全球变暖进入停滞时期,研究表明,大量热量进入海洋深层是导致全球平均表面温度暂缓上升的主要原因。本文估计和研究了2002.4-2014.12间由热膨胀导致的海平面变化趋势,以此来探测海洋热含量的变化情况。研究使用GRACE重力卫星CSR RL05数据计算了全球海洋的水质量变化,并结合海平面异常数据,计算了由热量变化导致的海平面变化(Net SLA)。将Net SLA与Ishii温度数据计算的海洋热含量进行相关性分析后表明,Net SLA与海洋热含量存在高度相关性,相关系数最大值达0.95。考虑到海洋观测只能表现海洋上层2000m的热含量变化,而除去水质量变化的海平面变化则反映了整层海洋的热含量变化,是估计海洋增暖趋势快慢的有利工具。经计算得出,2002至2014年间南太平洋和南印度洋存在加速增暖趋势,而近年来南半球环状模的增强是导致其增暖的主要原因。  相似文献   

6.
中国沿海地区对全球变化的响应及风险具有高度的复杂性及不确定性,亟需深入开展相关研究。本研究着重回顾了近年来有关我国沿海地区陆域及海域对全球变化的响应特征、机制以及风险的若干研究成果。分析表明,自1960年代以来,全球变暖背景下我国沿海地区陆域及相邻海域的表面温度上升趋势十分显著,上升幅度和速率均高于全球平均值;生物与非生物的物候变化显著,温暖期(春、秋季)明显变长,并以东中国海(渤、黄、东海)最为显著;海洋物种地理分布变化、生物季节演替和群落结构与功能异常突显,赤潮、绿潮等生态灾害频繁,赤潮有年代际增加现象,热带海域珊瑚白化加剧。分析还表明,自1980年以来,我国沿海地区出现越来越多的高温热浪,沿海海平面持续上升并不断达到新高度,特别是破纪录的极端高海温事件、超强台风-风暴潮和极端高水位频发,这使得沿海地区社会-生态系统的气候暴露度不断增大;同时,沿岸海域富营养化、大规模围填海、破坏性以及过度捕捞等人类活动加剧了社会-生态系统的气候脆弱性,沿海地区的洪涝灾害严重,滨海湿地生境和生物多样性减少。未来不同气候情景下中国东部尤其是东中国海很可能是全球升温和海平面上升幅度最大的海区之一。这表明未来我国沿海地区的灾害风险格局趋于复杂多变。为此,本研究指出了急需深入研究我国沿海地区全球变化综合风险的若干科学问题与关键技术。  相似文献   

7.
利用三维海洋环流模式(parallel ocean program,POP),探讨典型浓度路径(representative concentration pathway,RCP)情景下21世纪格陵兰冰川不同的融化季节对海平面变化的影响。结果表明:在RCP4.5情景下,当格陵兰冰川以7%×a~(-1)的加速度快速融化时,相比于只在夏半年融化,全年融化会导致动力海平面在北冰洋、北大西洋副极地海域加速上升,而在欧洲西北部和北大西洋副热带海域加速下降;比容海平面在北美沿岸加速上升,热带大西洋和南大西洋副热带海域也有所上升,北冰洋、欧洲西北部和北大西洋副热带则显著下降。格陵兰冰川不同的融化季节对海平面变化影响的不同,主要是由于相比于只在夏半年融化,格陵兰冰川全年融化会造成大量较冷较淡的融冰水被滞留在格陵兰岛南部海域,在冬半年,会导致上层海洋层化加强和大西洋经向翻转流进一步减弱,一方面造成大量海水在北大西洋副极地海域堆积;另一方面导致向北的热盐输运减弱,从而造成了北冰洋、北大西洋副极地和副热带海域东部的热比容海平面显著下降和盐比容海平面加速上升。  相似文献   

8.
区域海平面变化是目前气候变化研究的热点问题。海平面变化具有时间和空间的异质性,分析海平面变化,应充分考虑时间和空间的差异。基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、最小二乘法,利用卫星高度计、验潮站数据,分析了1993—2016年间中国近海及周边海域海平面的时空变化规律。利用EEMD,计算了1993—2016年中国近海海平面变化空间结构的时间变化规律。结果表明中国近海海平面持续升高,但海平面变化在空间分布和时间上的变化并不均匀。空间结构大致分三个部分:大陆沿岸海平面持续上升且上升速率逐年增加,近海海区升高速率逐年降低,而研究区域内的西太平洋西部海区先减速升高又加速降低。分别利用EEMD分解和线性最小二乘拟合算法计算了1993—2016年中国近海海平面平均上升速率的空间分布,结果表明两种方法得到的海平面升高速率的空间分布大致吻合。两种方法均显示沿海地区的上升速率远大于近海海区,沿海地区上升速率大约为6 mm/a,近海海区上升速率大约为2 mm/a。但EEMD方法显示在广东沿岸和靠近赤道部分区域的上升速率更大。分别计算了大陆沿岸、近海及西太平洋西部海区三个海区内空间平均的海平面时间变化的线性及非线性趋势。非线性趋势显示大陆沿岸海区海平面加速上升,上升速率由1993年的3.65 mm/a,增加到2016年的5.03 mm/a;近海地区海平面上升速率逐年变小,由1993年的4.51 mm/a,减缓至2016年的3.8 mm/a;西太平洋西部海区海平面先减速上升,后加速下降,从1993年的上升率为9.5 mm/a,逐渐变化到2016年的下降率为2.27 mm/a。利用验潮站数据分析了大连、坎门、香港的水位变化,除大连海平面上升速率降低外,其余均显示海平面上升速度逐年升高,和卫星高度计的结果吻合。  相似文献   

9.
因气候变暖导致的海平面上升是全球面临的海洋问题。为加强海南岛的海洋防灾减灾工作,保障其沿海地区的生态环境和经济社会发展,文章在调查评估的基础上,分析海平面上升对海南岛沿海地区的影响,并提出对策建议。研究结果表明:我国沿海海平面总体呈波动上升趋势,海南岛沿海海平面的上升速率居全国之首;海平面上升对海南岛沿海地区的影响主要包括淹没滨海低地和减小旅游区沙滩面积,加重风暴潮、海岸侵蚀、海水入侵和土壤盐渍化、洪涝的灾害程度以及影响海岸防护设施等方面;在海南岛沿海地区发展中,应充分考虑海平面上升的因素,加强灾害风险抵御能力建设、城市科学规划、海平面观测和监测以及受损岸线整治修复等工作。  相似文献   

10.
黑潮延伸体海域海平面变化及其与比容变化的关系   总被引:1,自引:0,他引:1  
使用AVISO高度计海面高度异常、SODA的温、盐和混合层深度资料,研究黑潮延伸体(KE)海域海平面变化及其与海水比容变化的关系.1993-2007年KE上游区海平面上升,而比容海平面则微弱下降;两者均具有年代际和年际变化,在年际尺度上的差异显著.KE下游区海平面年代际变化明显,而比容海平面表现出显著的年际变化特征.海...  相似文献   

11.
21世纪海上丝绸之路战略是中国“一带一路倡议”的重要组成部分。海上丝绸之路海域海洋环境的认知和调查是必不可少的,可以为航海、海洋工程、防灾减灾等领域提供科学依据。本文使用高分辨率多平台交叉定标风产品(CCMP)分析海上丝绸之路海域的大风特性。分析了大风天气的年平均速度、空间分布,以及风速和极端风速的频率和趋势。结果表明,在夏季,相对较高的大风场主要分布在阿拉伯海、索马里海、印度支那半岛海域和孟加拉湾海域。索马里海的大风频率超过90%。总体而言,南海大部分区域和北印度洋,大风天逐年增加,增加趋势在秋冬季节尤为明显。  相似文献   

12.
边缘海氮循环过程研究是全球海洋氮循环研究的重要组成部分,对全球氮源汇格局有显著影响,进而对全球气候变化产生反馈。人为活动和气候变化又是影响边缘海关键氮循环过程速率的重要因素。南海作为中国和西北太平洋最大的边缘海,是边缘海氮循环研究的理想场所。本文详细总结了南海近岸和海盆区的氮源汇过程及其内循环过程的最新研究进展,结果显示人为活动对上述过程的显著扰动。此外,全球变暖和海洋酸化正改变不同的氮循环过程速率,并可能引起南海氮收支平衡的不确定性。文章最后提出了边缘海氮循环研究的重要发展方向。  相似文献   

13.
自然环境特征对海洋开发建设有着重要影响,为了更好地为21世纪海上丝绸之路建设提供科学依据,文章重点对南海、孟加拉湾、阿拉伯海三大海域的地理概况、气候特征进行系统性统计分析。结果表明,该海域的风场、风浪、表层海流受季风影响明显,其中阿拉伯海和孟加拉湾受西南季风的影响更为明显,冬季风的影响次之,南海则相反。阿拉伯海的热带气旋主要活动于其东侧,孟加拉湾则在其中东部区域,南海主要是北部海域受热带气旋影响明显。南海—北印度洋的能见度整体乐观。夏季降水明显多于冬季,夏季大值区分布于印度半岛西部近海、孟加拉湾东北部、马尼拉西部区域。  相似文献   

14.
中国近海区域浮游植物生态对气候变化的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
我国近海区域对气候变化高度敏感,浮游植物生态的变化关系到我国近海生态安全.采用重构的遥感数据等资料,分析并综述我国近海区域浮游植物叶绿素a浓度、初级生产力和浮游植物群落结构对气候变化背景下海水升温、风场等环境因子的响应.结果表明,东(南)中国海叶绿素a浓度略有上升(下降)的趋势,但浮游植物群落结构和生物量有明显的变化;其中,微微型浮游植物和甲藻占比增加,小型浮游植物物种成为海区优势种,暖水性种分布区北扩,而这与气候变化背景下海洋热动力环境的长期变化及其对营养盐供给的影响关系密切.分析还指出了气候变化对我国近海区域海洋生态影响研究迫切需要开展的若干工作.  相似文献   

15.
Oceanic Islands in the Pacific and Indian Oceans have extremely small land areas, usually less than 500 km2, with maximum height about 4 m above sea level. The Republic of Maldives is an independent island nation in the Indian Ocean south of Sri Lanka which stretches vertically in the Indian Ocean from 07° 06'N - 0° 42'S. The land area of this island country is about 300 km2, and none of Maldives' 1190 islands has an elevation more than 3 m above sea level. In fact the Maldives has the distinction of being the flattest country on earth, making it extremely vulnerable to the effects of global warming. Of the south Asian countries, the Maldives is the most vulnerable nation, facing severe consequences as a result of global warming and sea level rise (SLR). Because of their obvious vulnerability to SLR, the Government of Maldives is very much concerned about climate change. As global warming and the related SLR is an important integrated environmental issue, the need of the hour is to monitor and assess these changes. The present article deals mainly with the analysis of the tidal and Sea Surface Temperature (SST) data observed at Male and Gan stations along the Maldives coast in the northern and southern hemispheres, respectively. The objective of the analysis is to study the trends of these parameters. Trend analysis is also performed on the corresponding air temperature data of both stations. The results show that Maldives coastal sea level is rising in the same way (rising trend) as the global sea level. The mean tidal level at Male has shown an increasing trend of about 4.1 mm/year.Similarly at Gan, near the equator,it has registered a positive trend of about 3.9 mm/year.Sea level variations are the manifestations of various changes that are taking place in the Ocean-Atmosphere system. Therefore, the variations in SST and air temperature are intimately linked to sea level rise. It is found that SST and air temperature have also registered an increasing trend at both stations. The evidence of rising trends suggest that careful future monitoring of these parameters is very much required. Tropical cyclones normally do not affect the Maldives coast. However, due to its isolated location, the long fetches in association with swells generated by storms, that originated in the far south have resulted in flooding. Thus the rising rate of sea level with high waves and flat topography have increased the risk of flooding and increased the rate of erosion and alteration of beaches.  相似文献   

16.
Oceanic Islands in the Pacific and Indian Oceans have extremely small land areas, usually less than 500 km2, with maximum height about 4 m above sea level. The Republic of Maldives is an independent island nation in the Indian Ocean south of Sri Lanka which stretches vertically in the Indian Ocean from 07° 06'N - 0° 42'S. The land area of this island country is about 300 km2, and none of Maldives' 1190 islands has an elevation more than 3 m above sea level. In fact the Maldives has the distinction of being the flattest country on earth, making it extremely vulnerable to the effects of global warming. Of the south Asian countries, the Maldives is the most vulnerable nation, facing severe consequences as a result of global warming and sea level rise (SLR). Because of their obvious vulnerability to SLR, the Government of Maldives is very much concerned about climate change. As global warming and the related SLR is an important integrated environmental issue, the need of the hour is to monitor and assess these changes. The present article deals mainly with the analysis of the tidal and Sea Surface Temperature (SST) data observed at Male and Gan stations along the Maldives coast in the northern and southern hemispheres, respectively. The objective of the analysis is to study the trends of these parameters. Trend analysis is also performed on the corresponding air temperature data of both stations. The results show that Maldives coastal sea level is rising in the same way (rising trend) as the global sea level. The mean tidal level at Male has shown an increasing trend of about 4.1 mm/year.Similarly at Gan, near the equator,it has registered a positive trend of about 3.9 mm/year.Sea level variations are the manifestations of various changes that are taking place in the Ocean-Atmosphere system. Therefore, the variations in SST and air temperature are intimately linked to sea level rise. It is found that SST and air temperature have also registered an increasing trend at both stations. The evidence of rising trends suggest that careful future monitoring of these parameters is very much required. Tropical cyclones normally do not affect the Maldives coast. However, due to its isolated location, the long fetches in association with swells generated by storms, that originated in the far south have resulted in flooding. Thus the rising rate of sea level with high waves and flat topography have increased the risk of flooding and increased the rate of erosion and alteration of beaches.  相似文献   

17.
本文利用大洋环流模式POP研究RCP4.5情景下21世纪格陵兰冰川不同的融化速率对全球及区域海平面变化的影响。结果显示:当格陵兰冰川的融化速率以每年1%增加时,全球大部分海域的动力和比容海平面变化基本不变,主要是由于格陵兰冰川在低速融化时并不会导致大西洋经向翻转流减弱。当格陵兰冰川的融化速率以每年3%和每年7%增加时,动力海平面在北大西洋副极地、大西洋热带、南大西洋副热带和北冰洋海域呈现出显著的上升趋势,这是因为格陵兰冰川快速融化导致大量的淡水输入附近海域,造成该上层海洋层化加强和深对流减弱,导致大西洋经向翻转流显著减弱;与此同时,热比容海平面在北冰洋、格陵兰岛南部海域和大西洋副热带海域显著下降,而在热带大西洋和湾流海域明显上升;此时盐比容海平面的变化与热比容海平面是反相的,这是由于大量的低温低盐水的输入,造成北大西洋副极地海域变冷变淡、大西洋经向翻转流和热盐环流显著减弱,引起了太平洋向北冰洋的热通量和淡水通量减少,导致了北冰洋海水变冷变淡,同时热带大西洋滞留了更多的高温高盐水,随着湾流被带到北大西洋,北大西洋副极地海域低温低盐的海水,被风生环流输运到副热带海域。  相似文献   

18.
卢峰  郑彬 《海洋学报》2011,33(5):39-46
利用1967-2009年的逐月海表温度(Sea Surface Temperature,SST)资料和降水资料,以及经验正交函数(Empirical Orthogonal Function,EOF)和相关分析方法,探讨了亚印太交汇区(Joining Area of Asia and Indian-Pacific Oce...  相似文献   

19.
印度洋-西太平洋海洋动物谱系地理演化格局   总被引:2,自引:1,他引:1  
印度洋和西太平洋海域,拥有大量浅海大陆架、边缘海和岛屿,孕育了全球最丰富的初级生产力和渔业资源,尤其是作为该区域陆源物质输入、两大洋能量汇聚中心和生物多样性中心的东印度三角,在全球海洋生物分布和进化中扮演了重要角色。本文结合物理海洋和化学海洋环境,通过线粒体基因和核基因等分子标记研究结果,归纳分析了印度洋和西太平洋区域海洋动物谱系生物地理演化格局及其可能的成因。具体结果如下:(1)雷州半岛-海南岛、冰期暴露的台湾海峡和长江冲淡水等沿岸海区,阻碍了海洋动物在海区间的扩散,南海、东海和黄、渤海广布类群,多由一个星状辐射谱系组成,种群经历最近的数量扩张和区域扩散,而仅分布于南海的物种,一般具有多个深度分歧的遗传谱系,种群呈现出数量平衡状态,同一广布物种的南海和东海种群,因区域海洋环境差异,种群数量动态演化历史不同;(2)黑潮影响区的沿岸广布类群,黑潮海流促进了顺流扩散、限制了跨海流基因交流;(3)东印度三角区,存在"华莱士线"、"赫胥黎线"和"印度洋-太平洋线"等生物地理边界,该区域海洋或咸淡水溯河洄游动物多呈现为分布在生物地理边界两侧的2个遗传谱系;(4)西太平洋,存在与目前东西向大洋环流垂直的南北向跨赤道扩散和基因流现象,可能受到目前南北向随季节反转的沿岸流和深层海流影响;(5)印度洋东西海岸共享物种,受印度洋西向赤道流影响,海洋动物多由东印度洋向西印度洋跨洋扩散;(6)西印度洋广布物种/类群,呈现了两种不同种群分化格局——遗传同质均一种群和深度分化的遗传谱系;(7)东、北印度洋和南海区域共享大量物种,可能是海盆间双向扩散的结果;(8)海洋生物谱系生物地理进化史信息,可以用于地质事件、海洋环流和古气候重建。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号