首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high sensitivity manifold for the determination of trace quantities (nanomolar concentrations) of nitrate+nitrite and nitrite alone is described. The method uses a classical Technicon AutoAnalyzer II usually employed for shipboard analysis. A reproducibility of ± 1 nmol dm−3 for nitrate plus nitrite and nitrite alone was obtained, with an analytical rate of 40 samples h−1.  相似文献   

2.
A fluorescence-based chemistry has been developed for the detection of nitrite and nitrate (as excess nitrite following reduction of nitrate to nitrite). Detection limits are 4.6 and 6.9 nM, respectively. The technique capitalizes on the triple bond between the two nitrogen atoms within the diazonium ion formed via the well-known reaction between an acidified nitrite sample and an aromatic primary amine. Fluorescence of π-electrons within this bond allows this reaction to be probed with standard fluorescence spectroscopy. Reverse Flow Injection Analysis (rFIA) is used to correct for background fluorescence from leachates and naturally occurring dissolved organic matter (DOM). Comparisons of samples analyzed for nitrite with this technique and with a highly-sensitive chemiluminescent method [Braman, R.S., Hendrix, S.A., 1989. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. Analytical Chemistry, 61 (24) 2716–2718] showed excellent agreement between the two methods (slope=0.9996 and r2=0.9956). These fluorescent nitrite and nitrate + nitrite chemistries were coupled in a sensor package with a modified version of a fluorescent ammonia chemistry [Jones, R.D., 1991. An improved fluorescence method for the determination of nanomolar concentrations of ammonia in natural waters, Limnology and Oceanography. 36(4) 814–819], which also has a nanomolar detection limit. The throughput rate of the fully automated three-channel instrumentation is 18 samples per hour. A field experiment demonstrated the capability of the nutrient sensor package to determine horizontal gradients in nitrate, nitrite, and ammonia in oligotrophic surface waters.  相似文献   

3.
A method has been developed for determination of15N isotope ratio in nitrate nitrogen, which is a major analytical step in tracer experiments for studies of nitrate metabolism in the marine environment. The method is based on diazotization of nitrite with sulfanilic acid following reduction of nitrate to nitrite by a cadmium-copper column. The diazonium compound is then subject to the azo coupling reaction with 2-naphthol, and the azo dye formed is extracted by a solid phase extraction column. The dye eluted from the column is collected, and total nitrogen and15N content of the dye are determined by mass spectrometry. Sulfanilic acid can also remove preexisting nitrite by heating the sample under acidic conditions before passing through the cadmium-copper reduction column. The average recovery of nitrate nitrogen was 86%. A procedure for reducing the background nitrogen that derives from the analytical operations has been developed; background nitrogen was limited to about 0.25 μg-atomN. The variation in the background nitrogen levels reflects the range of error in15N determination of nitrate nitrogen by this method. Application of the present method to a15NO3 isotope dilution experiment for determination of nitrification rate in sea water is demonstrated.  相似文献   

4.
Isotopic analyses of nitrate by the denitrifier method, and indeed by many other analytical methods, do not discriminate between nitrate and nitrite. For samples containing both chemical species, accurate isotopic analysis of nitrate requires either removal of nitrite or independent isotopic analysis of nitrite and subtraction of its contribution to the mixed isotopic signal. This study evaluates the application of a variety of available analytical approaches to the isotopic analysis of mixed nitrate and nitrite solutions, with the goal of producing accurate coupled isotopic analyses of both nitrate and nitrite. These methods are tested on mixtures of standard solutions of nitrate and nitrite, and then applied to the coupled δ15N and δ18O analyses of nitrate and nitrite in waters of the Eastern Tropical North Pacific (ETNP). Results from standard mixtures show that even for extreme values of nitrate and nitrite δ15N and δ18O, both nitrite removal by ascorbate and nitrite isotopic analysis and subtraction from the mixed isotopic signal yield nitrate δ15N and δ18O values that are close to the expected values. Application of these analyses to samples from the ETNP yielded δ15NNO3 and δ18ONO3 values as high as 21‰ vs. AIR and 19‰ vs. VSMOW, respectively. Conversely, very low δ15N values were observed in nitrite, with values ranging from − 7.2 to − 18.5‰ vs. AIR. Removal of nitrite from ETNP samples thus revealed differences of up to 5‰ between NO3- and NO2- + NO3- for both δ15N and δ18O. Moreover, the δ15N offset between co-occurring nitrate and nitrite is greater than expected from the action of denitrification alone and may provide a unique constraint on the processes involved in the cycling of nitrite in and around oxygen deficient zones. Finally, subtraction of the nitrite δ15N and δ18O from ETNP samples allows the extension of the Δ(15,18) tracer into suboxic regions containing nitrite. The magnitude and distribution of Δ(15,18) in these samples suggests an important role for nitrite reoxidation in nitrate isotope variations.  相似文献   

5.
The photolysis of nitrate in seawater by sunlight has been re-examined using abiotic seawater and naturally occurring concentrations. Photochemical formation of nitrite from nitrate was observed. First-order nitrate photolysis rate coefficients calculated from nitrite appearance (corrected for concomitant nitrite photolysis) ranged from 0 to 2.3 yr?1, median 0.7 yr?1. The coefficients did not correlate well with water chemistry, but decreased with increasing light dose. A first-order rate coefficient of 0.4 yr?1 was calculated for the primary photochemical process NO3? + hυ = NO2? + O(3P) under sea surface equatorial insolation and cloudiness conditions. However, no significant nitrate concentration decreases could be detected, suggesting an upper limit for the net first-order nitrate loss rate coefficient of 0.3 yr?1. The data thus imply some conversion in the reverse sense: NO2? + hυ →→ NO3?.If our median rate estimate applies to surface oceanic conditions, nitrate photolysis proceeds at roughly 0.02–0.5% of the rate of N incorporation during primary production. It is thus not a significant NO3-N sink. Since such reactive species as oxygen atoms, nitrogen dioxide, and hydroxyl radicals are produced, the reaction may have significant consequences in seawater. However, nitrite photolysis is almost certainly a more significant process.The results show internal inconsistencies and our rates are markedly different from those calculated using data from other studies. Nitrate photolysis rates are theoretically concentration- and light dose-dependent. Whether these dependencies explain the apparent discrepancies is unclear, as methodological effects may also be involved. The system requires further study.  相似文献   

6.
The vestimentiferan tubeworm Riftia pachyptila derives most or all of its nutrition from intracellular chemosynthetic bacterial symbionts. Because purified preparations of symbionts respire nitrate, possibly nitrite, and oxygen, host transport of nitrate is a topic of interest. In the present study, we have developed a nitrate detection assay that utilizes a nitrite reductase-deficient Escherichia coli strain for the reduction of nitrate to nitrite, which is then determined spectrophotometrically. Nitrate and nitrite concentrations were measured in the blood and coelomic fluids of R. pachyptila collected from hydrothermal vent sites at 9°N and 13°N. The blood was shown to have nitrate concentrations up to one hundred times that of ambient sea water (40 μM). Blood nitrate levels reached concentrations of>1 mM, while nitrite was measured in the range of 400-700 μM. The concentrations of nitrate and nitrite in the coelomic fluids were 150-240 μM and <20 μM, respectively. The nitrate determination technique we present here is simple, applicable for laboratory and shipboard use on sea water or biological fluids, and works reliably within the 0.5 to 2000 μM range.  相似文献   

7.
Surface waters of Alsea Bay, an unpolluted estuary on the Oregon coast, were analysed for nitrous oxide, nitrate and nitrite on a weekly or biweekly basis during the summer of 1979. The estuary was found to be a variable source of N2O to the atmosphere. Large and rapid increases in the concentrations of N2O, NO3?, and NO2? occurred at the beginning of the sampling period and are attributed to the influx of nutrient-rich upwelling water into the estuary with the tide. The subsequent decline in concentrations of nitrate, nitrite and nitrous oxide over the remainder of the summer is attributed to a decrease in upwelling intensity, a decline in nitrification rates and to assimilatory nitrate reduction. Measurements of nitrous oxide at six stations along the Alsea River were also made in September and October before and after the onset of the rainy season. Samples taken after flood conditions were established were systematically 50% higher than pre-flood samples. The data suggest that soil runoff results in elevated concentrations of N2O in rivers.  相似文献   

8.
溶解态无机氮(dissolved inorganic nitrogen, DIN)主要由亚硝酸盐-氮(NO-2-N)、硝酸盐-氮(NO-3-N)和铵氮(NH+4-N)组成,它们在海洋的生物地球化学循环过程中起重要作用。但人类活动向海洋输入了大量无机氮,导致一系列环境问题。为了更好地开展海洋氮循环研究和环境污染管理,需对海水中的DIN进行测定。在众多分析方法中,光谱法因其通用性好、适用范围广、所需设备简单,成为测定海水DIN的首选。本文总结了近10年来基于光谱法测定海水DIN的研究进展,包括紫外分光光度法测定NO-3-N、萘乙二胺分光光度法测定NO-2-N和NO-3-N、次溴酸盐氧化-分光光度法测定NH+4-N、靛酚蓝分光光度法测定NH+4-N、酸碱指示剂-分光光度法测定NH+4-N、荧光法和化学发光法测定DIN等,比较了各分析方法的特点,并展望了光谱法测定海水DIN的发展趋势。总的来说,在分析方法上,新试剂的使用以及一些新合成材料的出现,丰富了DIN的分析手段;在分析仪器上,以流动分析技术为基础的分析仪器在DIN的实验室及现场分析中得到了广泛应用。DIN的分析方法均朝着简单便捷、全自动化、分析速度快、精确度高、可适用范围广的方向发展。  相似文献   

9.
Photochemical production rates and steady-state concentrations of the highly reactive OH radical were determined in Antarctic seawater in the Weddell-Scotia Confluence during the austral spring of 1993 and along the Antarctic Peninsula during the austral summer of 1994. OH radical photoproduction rates were 30±2 nM/day and 46±2 nM/day in surface open oceanic and coastal waters, respectively. Corresponding steady-state concentrations were 2.6×10−19 and 4.3×10−19 M which are similar to those found in tropical latitudes. In-situ irradiation experiments (drifter deployments) at different depths in the upper water column indicated that multiple sources for the OH radical existed at three Antarctic stations. Ultrafiltration studies and model calculations based on wavelength-dependent OH radical quantum yields indicated that the main sources were photochemical reactions of low molecular weight dissolved organic matter (DOM), nitrate, and nitrite. Production of the OH radical from nitrate photolysis was almost exclusively UV-B dependent, while OH radical production from nitrite photolysis was mainly UV-A dependent. OH production from DOM photolysis was both UV-A and UV-B dependent. In the upper few meters at open oceanic sites, nitrate and DOM were the dominant OH radical sources, while deeper in the water column DOM and nitrite were important because of the greater importance of UV-A with depth. During non-ozone hole conditions, nitrate contributed about 33%, while DOM plus nitrite contributed about 67% of the predicted OH radical production in open oceanic surface waters. During an ozone hole (151 Dobson units), the corresponding percentages changed to about 40 and 60% for nitrate and DOM due to the higher UV-B irradiance. Model calculations predict that during an ozone hole (151 Dobson units), OH radical production in surface waters will be enhanced by at least 20%, mostly from nitrate photolysis and to a lesser extent from DOM photochemical reactions. This study indicates that ozone hole events significantly increase OH radical production, as well as the photolysis of DOM, in Antarctic waters, and that rates can be as high or higher than those at lower latitudes, especially if differences in temperature and solar irradiance are taken into account.  相似文献   

10.
Nitrification in a closed prawn-culture system was well established and followed the classical oxidation sequence of ammonia via nitrite to nitrate. Ammonia levels were in the range 4,8–68,7 μg-at N·??1 nitrite 0,15–891 μg-at N·??1 and nitrate approached a maximum of 9 898 μg-at N·??1 after 22 weeks. Marine nitrifying bacteria were enumerated by the most probable number (MPN) technique. The maximum MPN estimate of either group of nitrifying bacteria in the filter was 1,73 × 107·cm?3 while the maximum MPN estimate of their counterparts in the culture water was approximately 500 times lower. To establish mean incubation times for the accurate enumeration of nitrifying bacteria, incubations were carried out over a period of 130 days. Maximum estimates of MPN of ammonia-oxidizing bacteria were obtained after an incubation period of 20 days with a mean of 15 days. Nitrite-oxidizing bacteria required a maximum of 65 days with a mean incubation period of 30,3 days.  相似文献   

11.
During 1985~1987,the concentration of nitrate nitrogen was higher in the Laizhou Bay and the Bohai Bay while that of nitrite nitrogen was higher in the Liaodong Bay and the Bohai Bay,The concentration of nitrate nitrogen was highest in winter and lowest in summer while that of nitrite nitrogen was highest in autumn and lowest in spring .the seasonal variation of the concentration of nitrate nitrogen was maximum in the Laizhou Bay and the Bohai Bay while that of the concentration of nitrite nitrogen was maximum in the Liaodong Bay.There was a great difference in the concentration of nitrate nitrogen between the surface and the bottom in autumn and in the concentration of nitrite nitrogen between the surface and the bottom in summer.The main reason for the seasonal variations of the concentration of nitrate nitrogen and nitrite nitrogen was the marine biochemical process.The nitrate nitrogen and nitrite nitrogen in the Bohai Sea basically maintained a quasi-equilibrium state seasonal cycle,The quesi-equilibrium state seasonal cycle of nitrate nitrogen and nitrite nitrogen at the bottom was stable while that at the surface was liable to variations caused by other factors.  相似文献   

12.
《Marine Chemistry》2007,103(1-2):84-96
An isotope dilution method has been developed to determine by gas chromatography/mass spectrometry (GC/MS) the rates of ammonium and nitrite oxidation in severely oligotrophic marine waters. The method is based on the formation of sudan-1 from nitrite, or from nitrate following reduction to nitrite. Samples were collected by solid phase extraction and purified by high performance liquid chromatography (HPLC). A deuterated sudan-1 internal standard was synthesized, purified by HPLC and used for quantitative analysis. Concentrations of NO2 and NO3 were generally < 2 nmol/kg and < 5 nmol/kg respectively, typical of oligotrophic surface waters, and turnover times for the inorganic N pools ranged from < 1 day to > 10 days. Significant rates of nitrification were measured in the surface oligotrophic ocean, with rates of ammonium and nitrite oxidation generally within the range of 10–500 pmol/kg/h. Consequently, a significant proportion of daily NO3 assimilation by marine phytoplankton is regenerated, and not new. In a case study of the oligotrophic gyre of the North Atlantic, the influence of NH4+ regeneration and nitrification on f-ratio values suggests that in the oligotrophic ocean, f-ratio values may be significantly, and sometimes grossly, overestimated.  相似文献   

13.
Application of a portable spectrophotometric analysis system for measurement of nitrite in seawater is described in this work. The spectral analysis system (SEAS) used for observations of the primary nitrite maximum (PNM) has an operational depth of 500 m and is capable of fully autonomous data acquisition and analysis. The liquid core waveguides (LCWs) used as optical cells in SEAS allow for optical pathlengths as long as 5 m and provide subnanomolar detection limits for a variety of analytes. The 1-m waveguide used in the present study had an internal volume of 0.52 cm3 and provided NO2 measurement precisions and detection limits on the order of 1.2 and 2.5 nM. The time required for a complete in situ analysis, approximately 3–5 min, allows acquisition of detailed profiles on time scales commensurate with the duration of typical hydrocast operations. NO2 profiles in the Gulf of Mexico showed very sharp gradients over a 5–10-m depth range and a primary nitrite maximum between 100 and 130 m. A shoulder was often observed approximately 10 m below the primary maximum, with relatively slowly decreasing NO2 concentrations at increasing depth.  相似文献   

14.
A synoptic spatial examination of the eddy Haulani (17–20 November 2000) revealed a structure typical of Hawaiian cyclonic eddies with divergent surface flow forcing the upward displacement of deep waters. Hydrographic surveys revealed that surface water in the eddy center was ca. 3.5°C cooler, 0.5 saltier, and 1.4 kg m−3 denser than surface waters outside the eddy. Vertically integrated concentrations of nitrate+nitrite, phosphate and silicate were enhanced over out-eddy values by about 2-fold, and nitrate+nitrite concentrations were ca. 8× greater within the euphotic zone inside the eddy than outside. Si:N ratios were lower within the upper mixed layer of the eddy, indicating an enhanced Si uptake relative to nitrate+nitrite. Chlorophyll a concentrations were higher within the eddy compared to control stations outside, when integrated over the upper 150 m, but were not significantly different when integrated over the depth of the euphotic zone. Photosynthetic competency, assessed using fast repetition-rate fluorometry, varied with the doming of the isopycnals and the supply of macro-nutrients to the euphotic zone. The physical and chemical environment of the eddy selected for the accumulation of larger phytoplankton species. Photosynthetic bacteria (Prochlorococcus and Synechococcus) and small (<3 μm diameter) photosynthetic eukaryotes were 3.6-fold more numerically abundant outside the eddy as compared to inside. Large photosynthetic eukaryotes (>3 μm diameter) were more abundant inside the eddy than outside. Diatoms of the genera Rhizosolenia and Hemiaulus outside the eddy contained diazotrophic endosymbiontic cyanobacteria, but these endosymbionts were absent from the cells of these species inside the eddy. The increase in cell numbers of large photosynthetic eukaryotes with hard silica or calcite cell walls is likely to have a profound impact on the proportion of the organic carbon production that is exported to deep water by sinking of senescent cells and cells grazed by herbivorous zooplankton and repackaged as large fecal pellets.  相似文献   

15.
Vertical distributions of the potential activities of some key enzymes mediating nitrification and denitrification were investigated within the oxygen (O2) minimum zone of the Arabian Sea at a number of locations between latitudes 17°N and 21°N and longitudes 63°E and 68°E so as to get an insight into the predominant biochemical mode(s) of production and consumption of nitrous oxide (N2O). Results revealed that the dissimilatory nitrate (NO3) reduction activity was generally very low or absent within the σθ range 26.6–26.8, which corresponds to the Persian Gulf Watermass (PGW). Depth profiles of nitrate reductase (NaR), nitrite reductase (NiR) and ammonia monooxygenase (AMO) activities were compared with those of O2, NO3, nitrite (NO2) and N2O, and it is concluded that nitrifier denitrification rather than heterotrophic denitrification is active within the core of PGW. The presence of multiple peaks of AMO activity coinciding with distinct maxima in the O2 profile and with a trend opposite to that of NaR activity indicates that the two processes, viz., classical and nitrifier denitrification, occur in discrete layers, probably determined by the variations in the ambient O2 concentrations at various depths surrounding the PGW core. Further, it appears that at the depths where nitrifier denitrification is active in the absence of heterotrophic denitrification, N2O builds up as its consumption may be inhibited by O2. Possible reasons for the occurrence of appreciable nitrate deficit within the core of PGW, where dissimilatory NO3 reduction is lacking, are discussed.  相似文献   

16.
Dissolved iron and Fe(II) were measured in the oxygen minimum zone (OMZ) of the Arabian Sea in September 2004. The OMZ is a well-demarcated feature characterized by high rates of denitrification, and a deep nitrite maximum coinciding with oxygen levels below 1 μmol L−1. This zone is significantly enriched in dissolved Fe relative to overlying and underlying waters and up to 50% of the dissolved Fe is present as Fe(II). The maxima in Fe(II) are at the same depth as the deep nitrite maxima, centered around 200–250 m. They coincide with a local maximum in total dissolved Fe, suggesting that Fe accumulates at this depth because of the greater solubility of Fe(II) over Fe(III). Fe(II) is thermodynamically unstable even at submicromolar oxygen levels, so active biological reduction is the most plausible source. To our knowledge, this is the first report of a potential link between Fe reduction, elevated dissolved Fe concentrations, and nitrite accumulation within an OMZ. Denitrification has a high Fe requirement associated with the metalloenzymes for nitrate and nitrite reduction, so in situ redox cycling of Fe has important implications for the nitrogen cycle.  相似文献   

17.
以实验室中已有的反硝化菌株作为出发菌株, 对这株自然菌株进行氯化锂和紫外线照射诱变,得到2 株硝酸盐还原率高且亚硝酸盐积累量低的突变体L02 与Z06。在培养基中硝酸盐起始含量为1 mmol/L, 静置培养的条件下, 这2 株突变株对硝酸盐的还原率均能达到95%以上; 摇床条件下培养,其还原率也能达到94%以上, 且对...  相似文献   

18.
Uptake rates of ammonium, nitrate, urea and nitrite were measured for 1 year (1988) at a coastal station in the well-mixed waters of the western English Channel. Ammonium was the major form of nitrogen (N) utilized (48%) by phytoplankton, followed by nitrate (32%), urea (13%) and nitrite (7%). Seasonal changes of uptake of ammonium, nitrate and urea showed a broad, intense summer maximum. Nitrite uptake was low throughout the year except for a peak value in June. Uptake rates of ammonium and nitrate were independent of substrate concentrations, whereas those of urea and nitrite were not. The summer maxima of ammonium, nitrate and total N uptake, and the significant relationships of N-uptake index to ambient light, and of chlorophyll-a-specific N uptake to surface-incident light, indicate that light is the major factor controlling N uptake in these waters. This is due to the permanent vertical mixing which reduces the mean light available for N uptake to <15% of the incident light. Mixing also injects regenerated N continuously into the euphotic zone, thus alleviating nitrogen limitation and accounting for the larger proportion of regenerated N uptake in total N uptake.  相似文献   

19.
This paper focuses on the characteristics of the oxygen minimum zone (OMZ) as observed in the Arabian Sea over the complete monsoon cycle of 1995. Dissolved oxygen, nitrite, nitrate and density values are used to delineate the OMZ, as well as identify regions where denitrification is observed. The suboxic conditions within the northern Arabian Sea are documented, as well as biological and chemical consequences of this phenomenon. Overall, the conditions found in the suboxic portion of the water column in the Arabian Sea were not greatly different from what has been reported in the literature with respect to oxygen, nitrate and nitrite distributions. Within the main thermocline, portions of the OMZ were found that were suboxic (oxygen less than ∼4.5 μM) and contained secondary nitrite maxima with concentrations that sometimes exceeded 6.0 μM, suggesting active nitrate reduction and denitrification. Although there may have been a reduction in the degree of suboxia during the Southwest monsoon, a dramatic seasonality was not observed, as has been suggested by some previous work. In particular, there was not much evidence for the occurrence of secondary nitrite maxima in waters with oxygen concentrations greater than 4.5 μM. Waters in the northern Arabian Sea appear to accumulate larger nitrate deficits due to longer residence times even though the denitrification rate might be lower, as evident in the reduced nitrite concentrations in the northern part of the basin. Organism distributions showed string relationships to the oxygen profiles, especially in locations where the OMZ was pronounced, but the biological responses to the OMZ varied with type of organism. The regional extent of intermediate nepheloid layers in our data corresponds well with the region of the secondary nitrite maximum. This is a region of denitrification, and the presence and activities of bacteria are assumed to cause the increase in particles. ADCP acoustic backscatter measurements show diel vertical migration of plankton or nekton and movement into the OMZ. Daytime acoustic returns from depth were strong, and the dawn sinking and dusk rise of the fauna were obvious. However, at night the biomass remaining in the suboxic zone was so low that no ADCP signal was detectable at these depths. There are at least two groups of organisms, one that stays in the upper mixed layer and another that makes daily excursions. A subsurface zooplankton peak in the lower OMZ (near the lower 4.5 μM oxycline) was also typically present; these animals occurred day and night and did not vertically migrate.  相似文献   

20.
蒋鹏  赵春贵  杨素萍 《海洋与湖沼》2014,45(6):1218-1224
采用高浓度无机三态氮(铵氮4NH?-N、亚硝氮2NO?-N和硝氮3NO?-N)共存的模拟海水体系,在最适生长条件下,研究了小分子有机物(糖类、有机酸、醇、有机氮)和p H对海洋着色菌(Marichromatium gracile)YL28去除水体无机三态氮的影响。结果表明:以葡萄糖、乙酸钠和乙醇为唯一碳源时,水体中的高浓度2NO?-N和3NO?-N均能被完全去除,4NH?-N的去除率分别为93.40%、84.55%和66.63%;碳源为乙酸钠时菌体生长最好,体系中添加蛋白胨或尿素,仅4NH?-N的去除效果明显降低。p H值在6.0—9.0时,该菌株对4NH?-N、2NO?-N和3NO?-N均具有去除能力。由此可知:YL28菌株对模拟海水养殖水体中高浓度无机三态氮具有良好的去除能力,高浓度有机氮化物(蛋白胨和尿素)对4NH?-N的去除能力有明显影响,但对2NO?-N和3NO?-N仍保持高效的去除能力。本研究为不产氧光合细菌制剂在水产养殖中的合理应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号