首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
A degradation-mixing model has been developed to aid in the interpretation of geochemical processes occurring in sewage-contaminated marine sediment near San Pedro, California. The nitrogen isotope ratio (1514N) is shown to be an effective tracer of sewage discharge-on the San Pedro Shelf. Isotopic fractionation of 15N14N during release of amino compounds or ammonia (as a consequence of bacterial degradation of organic detritus) appears to be negligible. The nitrogen isotope ratio, therefore, may be considered a conservative component for tracing the source of organic matter deposited in marine sediment.Uranium enrichment from seawater is shown not to occur in the highly reducing sewage-contaminated sediments. The content of uranium in the effluent particulates (18 ppm) is large compared with the content in the uncontaminated sediment (3 to 5 ppm). This allows the content of uranium to also be used as a tool for tracing the deposition of sewage particles in marine sediment. Uranium and nitrogen are shown to be incorporated in the organic fraction of sewage effluent and are released during bacterial degradation of the organic matter. Cadmium and sulphur are shown not to be mobilised during sewage deposition and degradation. The stable isotope ratio of sulphur (34S32S) is used to demonstrate that sulphur enrichment occurs in the sediment by in situ reduction of seawater sulphate. The data summarised by Morel et al. (1975) are presented and discussed in accordance with the above model.  相似文献   

2.
The daily concentrations of NH4+, NO3?, and NO3? + NO2? within the North Inlet system are all negatively associated with tidal stage during the late summer, this association breaking down during the winter. The high concentrations of these constituents during low tide coupled with the lack of streamflow during the late summer suggests that there is an internal source for these species. Ammonium and orthophosphate most likely have their source in sediment diffusion from tidal creek sediments and/or seepage from the vegetated marsh surface during tidal exposure. It is hypothesized that high nitrate plus nitrite values at low tide are caused by nitrification within the tidal water or tidal creek sediments. During the summer there is evidence for a source of dissolved organic nitrogen and dissolved organic phosphorus within the North Inlet system, probably via diffusion from creek sediments. In general the main source of dissolved organic nitrogen is via stream-flow from the adjacent watershed. Particulate nitrogen and phosphorus concentrations are a function of: (1) wind and rain events which cause resuspension of particulate material from the tidal creek banks, (2) rain events which scour the marsh surface during tidal exposure, and (3) high tidal velocities which scour the creek bottoms.  相似文献   

3.
The distribution of iodine and bromine was examined in sediments which receive inputs of marine and terrigenous organic matter. The I and Br concentrations are directly related to the content of ‘marine’ organic matter defined using carbon/nitrogen ratios. In the Etive sediments both Br and I may be used as an indicator of ‘marine’ organic matter; Br is of general application as the BrCmar ratio (180 × 10?4) is similar to ratios in other sedimentary environments but the use of I is restricted as the ICmar ratio is unlike those in other sediments. Experimental study of iodine sorption clearly shows the importance of decaying marine organic matter and oxygenated conditions in the incorporation of iodine by sediments. This suggests that the mechanism of incorporation of iodine by seston previously proposed is probably an important pathway to sediments. The similarity of Br association with marine organic matter suggests that Br sorption as opposed to residual enrichment may be important for sediment Br accumulation.  相似文献   

4.
Losses of 15N labelled nitrogen in a Spartina alterniflora salt marsh was measured over three growing seasons. Labelled NH4+N equivalent to 100 μg 15N g?1 of dry soil was added in four instalments over an eight week period. Recovery of the added nitrogen ranged from 93% 5 months after addition of the NH4+N to 52% at the end of the third growing season which represented a nitrogen loss equivalent to 3·4 gNm?2. The availability of the labelled NH4+N incorporated into the organic fraction was estimated by calculation of the rate of mineralization. The time required for mineralization of 1% of the tagged organic N increases progressively with succeeding cuttings of the S. alterniflora and ranged from 152 to 299 days. Only 2% of the nitrogen applied as 15N labelled plant material to the marsh surface in the fall could be accounted for in S. alterniflora the following season.  相似文献   

5.
Stable isotope ratios (δ13C) of total organic carbon were measured in surface sediments from the continental margins of the northern and western Gulf of Mexico, the north coast of Alaska and the Niger Delta. Gulf of Mexico outer-shelf isotope ratios were in the same range as has been reported for Atlantic coastal shelf sediments, ?21.5 to ?20‰. Off large rivers including the Mississippi, Niger and Atchafalaya (Louisiana), δ13C values increased from terrigenous-influenced (around ?24‰) to typically marine (~?20‰) within a few tens of kilometers from shore. This change was accompanied by a decrease in the amount of woody terrigenous plant remains in the sediment. Alaskan continental margin samples from the cold Beaufort Sea had isotopically more negative carbon (?25.5 to ?22.6‰) than did warmer-water sediments. The data indicate that the bulk of organic carbon in Recent sediments from nearshore to outer continental shelves is marine derived.  相似文献   

6.
Iron solubility equilibria were investigated in seawater at 36.22‰ salinity and 25°C using several filtration and dialysis techniques. In simple filtration experiments with 0.05 μm filters and Millipore ultra-filters, ferric chlorides fluorides, sulfates, and FeOH2+ species were found to be insignificant relative to Fe(OH)2+ at p[H+] = ?log [H+] greater than 6.0. Hydrous ferric oxide freshly precipitated from seawater yielded a solubility product of 1Kso = [Fe3+][H+]?3 = 4.7 · 105. Solubility studies based on the rates of dialysis of various seawater solutions and on the filtration of acidified seawater solutions indicated the existence of the Fe(OH)30 species. The formation constant for this species can be calculated as 1β3 = [Fe(OH)30] [H+]3/[Fe3+] = 2.4 · 10?14. The Fe(OH)4? species is present at concentrations which are negligible compared to Fe(OH)2+ and Fe(OH)30 in the normal pH range of seawater. However, there is at least one other significant ferric complex in seawater above p[H+] = 8.0 (possibly with bicarbonate, carbonate, or borate ions) in addition to the Fe(OH)2+ and Fe(OH)30 species.  相似文献   

7.
Equilibrium constants for copper(II)-carbonate and -bicarbonate species have been determined at 25°C from consideration of malachite, Cu2(OH)2CO3(s), solubility in UV-photo-oxidized perchlorate solutions of 0.72 m ionic strength. The ratios of total dissolved copper, T(Cu), to free copper(II) ion, [Cu 2+], in 30 malachite saturated experimental solutions of 1–10 × 10?3eq kg?1 H2O initial total alkalinity (TAi in the pH range 5.0–9.3 were fitted to a copper(II)-ion speciation model. The experimental data indicate the existence of CuCO3+, CuHCO3+ and Cu(OH)CO3? in addition to the hydrolys and Cu(OH)CO3? in addition to the hydrolysis products in the range of conditions defined by this study. The stoichiometric equilibrium constants, applicable to seawater at 0.72 m ionic strength, 25°C and 1 atm are
βCuCO3=[CuCO03][Cu2+][CO2?3]=(1.59±0.03)×106
βCuHCO3=[CuHCO+3][Cu2+][HCO?3]=(2.3±0.3)×102
1βCu(OH)CO3=[Cu(OH)CO?3H[Cu2+][CO2?3]=(7.6±0.3)×10?4
A speciation model employing the equilibrium constants determined in this study and copper(II) hydrolysis constants from previous work suggests that the inorganic speciation in seawater (pH = 8.2, TA = 2.3 meq kg ?1, 25°C) is dominated by the CuCO30 complex (82%) and that only 2.9% of the total inorganic copper exists as the free copper(II) ion. Hydrolysis products, CuOH+ and Cu(OH)20, account for 6.5% while CuHCO3+ and Cu(OH)CO3? species comprise 1.0 and 6.3% of the total inorganic copper, respectively.  相似文献   

8.
An investigation of ferric ion complexing has been conducted in synthetic media and seawater at 25°C. Formation constants were potentiometrically determined for the species FeCl2+, FeCl2+, FeOH2+, and Fe(OH)2+ at an ionic strength of 0.68 m. Formation constants for the ferric chloride complexes were determined as Clβ1 = 2.76 and Clβ2 = 0.44. In a study of the reaction Fe3+ + nH2O ? Fe(OH)n(3?n)+ + nH+ in NaClO4, NaNO3 and NaCl the formation constants 1β1and1β2 were shown to be relatively independent of medium when the effects of nitrate and chloride complexing were taken into account. The average values obtained for these constants are 1β1 = 1.93 · 10?3and1β2 = 8.6 · 10?8. Reasonable agreement with these values was obtained when these constants were determined in seawater by accounting for the effects of chloride, fluoride and sulfate complexing.  相似文献   

9.
Excess 210Pb in a core from a Mexican Coastal Lagoon, which has no connection with the sea shows a small but measurable decay over the length of the core, when different approaches were compared (excess and corrected 210Pb activity with depth, total and inorganic cumulative weights) significant differences in the values for the sedimentation rate are obtained. The best coefficient correlation was calculated when corrected 210Pb activity for the uneven distribution of organic matter and cumulative inorganic weight is considered (ω = 0·93 cm yr?1, R = ?0·86; ω = 0·51 cm yr?1 for the top 13 cm, R = ?0·90 and 1·52 cm yr?1 for the interval 14–46 with R = ?0·96).Time frames in the sedimentary column were in agreement between the 210Pb calculated time and the appearance of shells fragments probably associated with the disturbances caused by the 1961 hurricane Tara.The surface accumulation rate is equivalent to a mean deposition of 262·5 g m?2 yr?1 or organic matter which is minor but comparable to some salt marshes of United States.  相似文献   

10.
Sediment cores were taken from the Gulf of California, and pore waters recovered by mechanical squeezing. The chemistry and isotopic abundance of sulfur in these pore fluids were compared with coexisting solid phases to deduce the mechanisms involved in pyrite formation. The results suggest that burrowing activities of benthonic organisms supply sulfate sulfur to sediments to depths of approximately 0.5 m from the surface. This is inferred from essentially constant pore water concentration profiles of dissolved ions in horizons where sulfate reduction is demonstrated by the presence of iron sulfides.For a core from Pescadero Basin, it is estimated that beneath the mixed zone, diffusion adds 0.4% sulfur by dry weight of sediment, whereas burial of sulfate adds less than 0.1% sulfur. It is shown that diffusion can add isotopically light sulfur to sediments, due to more rapid relative addition of 32SO42? compared to 34SO42? down a concentration gradient maintained by bacterial processes. The overall net isotopic value of the sulfate so added is δ34S = ?4.5‰. The depth distribution of S-isotope in sulfur is controlled by the balance between a bacterial kinetic isotope effect preferentially removing 32S relative to 34S, and the supply of sulfate by diffusion. The isotopic fractionation factor, α, calculated by a mathematical formulation which takes diffusion into account, is larger (1.060±0.010) than when sulfate reduction is assumed to occur in a closed system (1.035). The larger value is supported by the sulfur isotope distribution in metastable iron sulfide. Essentially, the same open-system α was calculated for a core from Carmen Basin.  相似文献   

11.
Laboratory investigations were conducted on the formation of NaF° ion-pairs at the ionic strength of seawater using specific ion electrodes. Sodium and fluoride ion electrodes produced results which are consistent with the ion-pairing model for these ionic interactions. The stoichiometric association constant for NaF°, K1NaF, was determined at 15, 25, and 35°C. It was assumed that K1NaF was a function of temperature, pressure, and ionic strength but not of solution composition. The value for K1NaF at 25°C and I = 0.7 m is 0.045 ± 0.006. K1NaF increased with decreasing temperature. This result was used to recompute values of K1MgF and K1CaF accounting for the presence of NaF° ion-pairs. The value for K1NaF indicates that 1.1% of the fluoride in seawater is ion-paired with sodium at 25°C and 35‰ salinity. This fraction increases to approximately 2% at the lower temperatures found in the deep ocean. The percentage of free fluoride in natural seawater was measured at 15, 25, and 35°C to verify the speciation calculated from equilibrium constants.  相似文献   

12.
13.
The apparent ionization constants for silicic acid, k1 and k2, and the ionic product of water, kw, have been determined in 0.05, 0.1, 0.2, 0.4 and 2.0 M Na(CI) media at 25°C. The medium dependence of these constants was found to fit equations of the form
logki=logKi+aiI12(1+I12)+biI
where K1 is the ionization constant in pure water, αi and bi are parameters of which bi has been adjusted to present data. The following results were obtained (αi, bi): pK1 = 9.84, (1.022, ?0.11); pK2 = 13.43, (2.044, ?0.20); and pKw = 14.01 (1.022, ?0.22). ki values are collected in Tables I and II. Attempts have been made to explain the medium dependence of k1 and k2 with weak sodium silicate complexing according to the equilibria
Na++SiO(OH)?3?NaSiO(OH)3;k11
Na++SiO2(OH)22?NaSiO2(HO)?2; k21
giving k11 = 0.37M?1 and k21= 3.0M?1. However, these weak interactions cannot be interpreted unambiguously from potentiometric data at different 1-levels. Probably the medium dependence could equally well be expressed by variations in the activity coefficients.The measurements were performed as potentiometric titrations using a hydrogen electrode. The average number of OH- reacted per Si(OH)4, Z, has been varied within the limits 0 ? Z ? 1.1 and B1, the total concentration of Si(OH)4, between 0.001 M and 0.008 M. k1 was evaluated from experimental data with B ? 0.003 M, and k2 with B ? 0.008 M and Z ? 0.95.  相似文献   

14.
M.D Kumar 《Marine Chemistry》1983,14(2):121-131
A model is presented which signifies the role of oxygen (as oxides and hydroxides) in controlling the composition of seawater. Using the regression equations
log KSW=-0.77+0.03ΔO2-M and [M]SW=KSW[M]crust
logt=4.73+0.04ΔO2-M
respective concentration and residence times for the unknown elements can be estimated. Geometric and statistical indices of Legget and Williams (1981) are used to evaluate the accuracy of the model. This reveals from the known values of ΔO2?M that the present model estimates log ty values within a factor of 1.77. The predicted oceanic residence times for Am, Ir, Ra and Rh are 3.6 × 102, 3.7 × 102, 2.2 × 105 and 6.4 × 102 years, respectively.  相似文献   

15.
16.
The MITAS (Methane in the Arctic Shelf/Slope) expedition was conducted during September, 2009 onboard the U.S. Coast Guard Cutter (USCGC) Polar Sea (WAGB-11), on the Alaskan Shelf/Slope of the Beaufort Sea. Expedition goals were to investigate spatial variations in methane source(s), vertical methane flux in shallow sediments (<10 mbsf), and methane contributions to shallow sediment carbon cycling. Three nearshore to offshore transects were conducted across the slope at locations approximately 200 km apart in water column depths from 20 to 2100 m. Shallow sediments were collected by piston cores and vibracores and samples were analyzed for sediment headspace methane (CH4), porewater sulfate (SO42−), chloride (Cl), and dissolved inorganic carbon (DIC) concentrations, and CH4 and DIC stable carbon isotope ratios (δ13C). Downward SO42− diffusion rates estimated from sediment porewater SO42− profiles were between −15.4 and −154.8 mmol m−2 a−1 and imply a large spatial variation in vertical CH4 flux between transects in the study region. Lowest inferred CH4 fluxes were estimated along the easternmost transect. Higher inferred CH4 flux rates were observed in the western transects. Sediment headspace δ13CCH4 values ranged from −138 to −48‰, suggesting strong differences in shallow sediment CH4 cycling within and among sample locations. Measured porewater DIC concentrations ranged from 2.53 mM to 79.39 mM with δ13CDIC values ranging from −36.4‰ to 5.1‰. Higher down-core DIC concentrations were observed to occur with lower δ13C where an increase in δ13CCH4 was measured, indicating locations with active anaerobic oxidation of methane. Shallow core CH4 production was inferred at the two western most transects (i.e. Thetis Island and Halkett) through observations of low δ13CCH4 coupled with elevated DIC concentrations. At the easternmost Hammerhead transect and offshore locations, δ13CCH4 and DIC concentrations were not coupled suggesting less rapid methane cycling. Results from the MITAS expedition represent one of the most comprehensive studies of methane source(s) and vertical methane flux in shallow sediments of the U.S. Alaskan Beaufort Shelf to date and show geospatially variable sediment methane flux that is highly influenced by the local geophysical environment.  相似文献   

17.
An 8.5 m long apparently undisturbed core from a hilltop on the crest of the East Pacific Rise has uranium and thorium isotope distributions that are very unusual. The core is very poor in 232Th, and very rich in U, particularly at the 500-cm level, where a value of about 150 ppm is reached. At the same depth the 230Thxs reaches very large negative values. These facts could be accounted for if one assumes that solutions rich in U and poor in Th had been postdepositionally injected into the sediments about 90,000–110,000 years ago. The top of the sediment received much of its U from seawater, judging from the 234U238U ratio. Possibly carbonate rich solutions were the carriers of the injected uranium.  相似文献   

18.
19.
Seventy-nine δ13C analyses of oceanic particulate matter (> 0·μ) from semi-tropical (Gulf of Mexico, Caribbean and Atlantic) and polar (South Indian Ocean) waters showed that the carbon isotope composition of the particulate matter from the cold polar surface waters was lighter (?24·7 to ?26·0‰) than that from the surface in the semi-tropical regions (?19·8 to ?22·3 ‰), reflecting the temperature effect on the photosynthetic fixation of carbon. δ13C for deep samples (> 330 m) were generally more negative than the surface samples, except in some well-mixed polar areas.A difference both in organic carbon isotopic composition and percentage organic carbon in the POM and the tops of sediment cores was also apparent; a loss of approximately 95 % of incoming carbon and an increase in 13C of several per mille being observed during deposition of particulate matter. This indicates that after settling on the bottom there is extensive diagenesis of the POM by organisms, indicating the non-refractory nature of the organic matter.  相似文献   

20.
Spectrophotometric measurements are reported for the first apparent dissociation constant of hydrogen sulfide in seawater over the temperature range 7.5–25°C and 2–35.8‰ salinity. These data are described by the expression pK1′ = 2.527 ? 0.169 Cl13 + 1359.96/T. The second apparent dissociation constant in potassium chloride solution was estimated potentiometrically using a sulfide specific ion electrode. A value of ~13.6 was found for pK2′ at a KCl concentration of 0.67 M. It is suggested that explicit reference to the sulfide ion, S2?, in describing equilibria in marine waters be dropped in favor of a formulation involving the bisulfide ion, HS?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号