首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 109 毫秒
1.
The chloroplast and mitochondrion of brown algae (Class Phaeophyceae of Phylum Ochrophyta) may have originated from different endosymbiosis. In this study, we carried out phylogenomic analysis to distinguish their evolutionary lineages by using algal RNA-seq datasets of the 1 000 Plants (1KP) Project and publicly available complete genomes of mitochondria and chloroplasts of Kingdom Chromista. We have found that there is a split between Class Phaeophyceae of Phylum Ochrophyta and the others (Phylum Cryptophyta and Haptophyta) in Kingdom Chromista, and identified more diversity in chloroplast genes than mitochondrial ones in their phylogenetic trees. Taxonomy resolution for Class Phaeophyceae showed that it was divided into Laminariales-Ectocarpales clade and Fucales clade, and phylogenetic positions of Kjellmaniella crassi-folia, Hizikia fusifrome and Ishige okamurai were confirmed. Our analysis provided the basic phylogenetic relationships of Chromista algae, and demonstrated their potential ability to study endosymbiotic events.  相似文献   

2.
3.
4.
Endogenous viral elements in algal genomes   总被引:1,自引:1,他引:0  
Endogenous viral elements (EVEs) are host-genomic fragments originated from viral genomes. They have been found universally in animal and plant genomes. Here we carried out a systematic screening and analy-sis of EVEs in algal genomes and found that EVEs commonly exist in algal genomes. We classified the EVE fragments into three categories according to the length of EVE fragments. Due to the probability of sequence similarity by chance, we ignored the potential function of medium-length EVE fragments. However, long-length EVE fragments probably had capability to encode protein domains or even entire proteins, and some short-length EVE fragments had high similarity with host's siRNA sequences and possibly served functions of small RNAs. Therefore, short and long EVE fragments might provide regulomic and proteomic novelty to the host's metabolism and adaptation. We also found several EVE fragments shared by more than 3 algal genomes. By phylogenetic analysis of the shared EVEs and their corresponding species, we found that the integration of viral fragments into host genomes was an ancient event, possibly before the divergence of Chlorophytes and Ochrophytes. Our findings show that there is a frequent genetic flow from viruses to algal genomes. Moreover, study on algal EVEs shed light on the virus-host interaction in large timescale and could also help us understand the balance of marine ecosystems.  相似文献   

5.
The study aims to reveal phylogenetic and evolutionary relationship between aerobic anoxygenic phototrophic bacteria (AAnPB) and their relatives, anaerobic anoxygenic phototrophic bacteria (AnAnPB) and nonphototrophic bacteria (NPB, which had high homology of 16S rDNA gene with AAnPB and fell into the same genus), and validate reliability and usefulness of farnesyl pyrophosphate synthase (FPPS) gene for the phylogenetic determination. FPPS genes with our modified primers and 16S rDNA genes with general primers, were amplified and sequenced or retrieved from GenBank database. In contrast to 16S rDNA gene phylogenetic tree, AAnPB were grouped into two clusters and one branch alone with no intermingling with NPB and AnAnPB in the tree constructed on FPPS. One branch of AAnPB, in both trees, was located closer to outgroup species than AnAnPB, which implicated that some AAnPB would be diverged earlier in FPPS evolutionary history than AnAnPB and NPB. Some AAnPB and NPB were closer located in both trees and this suggested that they were the closer relatives than AnAnPB. Combination codon usage in FPPS with phylogenetic analysis, the results indicates that FPPS gene and 16S rRNA gene have similar evolutionary pattern but the former seems to be more reliable and useful in determining the phylogenic and evolutionary relationship between AAnPB and their relatives. This is the first attempt to use a molecular marker beside 16S rRNA gene for studying the phylogeny of AAnPB, and the study may also be helpful in understanding the evolutionary relationship among phototrophic microbes and the trends of photosynthetic genes transfer.  相似文献   

6.
7.
8.
9.
Coralline algae(CA),a type of primary calcifying producer presented in coastal ecosystems,are considered one of the highly sensitive organisms to marine environmental change.However,experimental studies on coralline algae responses to elevated seawater temperature and reduced pH have documented either contradictory or opposite results.In this study,we analysed the growth and physiological responses of coralline algae Porolithon onkodes to the elevated temperature(30.8°C)and reduced pH(7.8).The aim of this analysis was to observe the direct and combined effects,while elucidating the growth and photosynthesis in this response.It was demonstrated that the algae thallus growth rate and photosynthesis under elevated temperature were depressed by 21.5%and 14.9%respectively.High pCO2 enhanced the growth and photosynthesis of the thallus at ambient temperature,while they were deceased when both temperature and pCO2 were elevated.CA is among the most sensitive organisms to ocean acidification(OA)because of their precipitate high Mg-calcite.We hypothesize that coralline algae could increase their calcification rate in order to counteract the effects of moderate acidification,but offset by the effect of elevated temperature.Accordingly,our results also support the conclusion that global warming(GW)is a stronger threat to algal performance than OA.Our findings are also proposed that coralline algae may be more resilient under OA than GW.  相似文献   

10.
11.
福建红树林区海藻的分布及季节变化   总被引:5,自引:0,他引:5  
主要研究了福建省3个红树林区的海藻不同滩面分布的情况、海藻种类组成的季节变化以及不同季节的海藻群落类型.研究表明:(1)福建红树林区海藻在不同滩面分布表现出,红藻较喜荫蔽潮湿的环境,而绿藻适生在光照条件较好生境.(2)由福建红树林区各门海藻种类组成的季节变化来看,蓝藻种数在一年四季没有明显变化规律,红藻四季种数变化幅度不大,而绿藻在不同季节种数有明显变化,春季种数最多,进入夏季后种数逐渐减少,到秋、冬季后种数又开始上升,到第2年春季又达到最多.(3)不同季节福建红树林区海藻群落类型中,优势种主要是红藻,以及一些绿藻.  相似文献   

12.
13.
Reef-building corals harbor symbiotic dinoflagellates, Symbiodinium spp., which are currently divided into several clades. The responses of corals associated with different Symbiodinium clades to thermal stress are not well understood, especially at a gene expression level. Juveniles of the coral Acropora tenuis inoculated with different algal types (clade A or D) were exposed to thermal stress and the expression levels of four putative stress-responsive genes, including genes coding green and red fluorescent proteins, an oxidative stress-responsive protein, and an ascorbic acid transporter, were analyzed by quantitative real-time PCR. The expression levels of the four genes decreased at high temperatures if juveniles were associated with clade A symbionts but increased if the symbionts were in clade D. The intensity of green fluorescence increased with temperature in clade D symbionts harboring juveniles, but not in juveniles associated with clade A symbionts. The present results suggest that genotypes of endosymbiotic algae affect the thermal stress responses of the coral juveniles.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号