首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
本文基于Aqua/MODIS、Terra/MODIS和Envisat/MERIS多源卫星叶绿素a浓度产品,研究了客观分析融合方法,制作了西北太平洋海域(0°~50°N,100°~150°E)叶绿素a浓度融合产品,并从有效数据空间覆盖率和产品精度两个方面对融合方法进行了评价。与单传感器以及欧洲太空局发布的GSM模型业务化融合产品相比,客观分析融合产品空间覆盖率明显提高;与收集的2002-2012年间叶绿素a浓度实测数据比较,GSM模型业务化融合产品的匹配数据点为578个,偏差为-0.20 mg/m3,均方根误差为0.37 mg/m3,客观分析法融合产品的匹配数据点为1432个,偏差为-0.21 mg/m3,均方根误差为0.36 mg/m3。结果表明:本文研究的客观分析融合方法在保证融合产品精度的同时可显著提高产品的空间覆盖率,在海洋水色融合应用前景广阔。  相似文献   

2.
认识海洋在全球碳循环中的作用及其对环境变化的响应,需要高时空分辨率的观测数据。由于轨道宽度、云雨天气、太阳耀斑等的影响,单一的水色传感器的观测能力十分有限,将多源海洋水色卫星进行融合是提高水色数据时空覆盖的一种有效途径。SeaWiFS和MERIS分别于2010年12月11日和2012年5月9日停止运行,在很大程度上降低了水色融合产品时空覆盖的提升。我们在融合过程中加入了FY-3 MERSI数据,生成了全球海洋叶绿素浓度遥感融合产品数据集。数据源包括SeaWiFS、MERIS、MODIS-Aqua、VIIRS和MERSI。结果表明:加入MERSI后,融合产品的日平均有效空间覆盖提高了9%;采样频率(同一区域一年中获取有效数据的次数)由57天/年提高到109天/年。利用实测数据和国外同类融合产品(ESA GlobColour和NASA MEaSUREs)对新的数据集进行了质量评价。与实测数据相比,加入MERSI的融合产品精度与未加入MERSI的融合产品基本一致;与国外同类融合产品的偏差小于10%。新数据集的时间序列特性与未加入MERSI的融合产品以及单传感器的一致。  相似文献   

3.
基于1998-2013年SeaWiFS和MODIS传感器的叶绿素浓度资料,本文分析了夏季南海西部叶绿素浓度高值带的年际变化规律。夏季,叶绿素及营养盐在海流的作用下离岸输送,从而在南海西部形成叶绿素浓度高值带,其分布与东向急流的流向一致。分析结果显示,高值带分布主要受13°N以南海域风场的调控,且滞后风场1周。当13°N以南海域受异常东北风(西南风)控制时,高值带位于其多年平均位置以北(南)。  相似文献   

4.
樊海平 《台湾海峡》2004,23(4):500-506
由吡喹酮和克螨特组成的复配制剂对小球藻、轮虫、蚤状溞、水蚯蚓和卤虫的毒性实验结果显示:复配制剂对轮虫的半致死浓度(LC50)为13.9mg/dm^3(24h)和3.03mg/dm^3(48h).安全浓度(SC)为0.0432mg/dm^3;对蚤状溞的LC50为345.14mg/dm^3(24h)和17.5mg/dm^3(48h),SC为0.0135mg/dm^3;对水蚯蚓的LC50为636.80mg/dm^3(24h)和79.07mg/dm^3(48h),SC为0.366mg/dm^3;对卤虫无节幼虫的LC50为201.84mg/dm^3(24h)和8.91mg/dm^3(48h).SC为0.00519mg/dm^3,复配制剂对水环境生物的破坏作用小.  相似文献   

5.
近20年渤海叶绿素a浓度时空变化   总被引:3,自引:0,他引:3  
浮游植物作为食物链的基础,对海洋生态系统具有重要作用。渤海作为我国最大的内海和重要渔业生物的产卵场、育幼场和索饵场,该区浮游植物研究具有重要意义。叶绿素a浓度是反映浮游植物生物量的重要指标。利用Google Earth Engine平台,对1997–2010年的宽视场海洋观测传感器(SeaWiFS)叶绿素a浓度数据和2002–2018年的水色卫星中分辨率成像光谱仪传感器(MODIS Aqua)叶绿素a浓度数据进行合并,并研究其时空变化特征。研究表明,近20年来,渤海全年叶绿素a浓度增加了14.1%,且增加显著。叶绿素a浓度在所有季节都呈现增加趋势;除11月外,其他各月都呈现稳定或增加趋势。从滦河入河口沿岸至渤海海峡的渤海中部,叶绿素a浓度增加较明显。同时也分析了海洋表面温度、风速和降水量数据。夏季渤海周边区域降水量和风速增加以及秋季海表温度的降低都有助于同季叶绿素a浓度的升高。渤海浮游植物可能受陆源营养物质输入影响较大。  相似文献   

6.
硒对钝顶螺旋藻生长的影响及其在细胞中的累积和分布   总被引:6,自引:0,他引:6  
本文研究了硒对纯顶螺旋藻(Spirulinaplatensis)生长的影响及其在细胞生化组成中的分布。结果表明,当硒浓度低于50mg/dm3时,对钝顶螺旋藻生长的抑制作用不明显,在低浓度下(<10mg/dm3)可促进其生长;当硒浓度超过50mg/dm3时则起抑制作用,高浓度对藻体起毒害作用。藻细胞中总硒含量与培养液中的硒浓度有关,在0~40mg/dm3范围内,硒含量随着培养液中硒浓度的增加而增加:从0mg/dm3的2.50×10-5(m/m,dw)到40mg/dm3的231.45×10-6(m/m,dw),至50mg/dm3,又开始降低为174.26×10-6(m/m,dw);硒在S.platensis生化组成中的分布,以蛋白质含量为最高,可达总硒的49.22%~71.49%,而脂类及碳水化合物-氨基酸中的含量则较低,分别为总硒含量的3.59%~6.18%和1.45%~2.56%,硒在各组成中的含量与培养液中的硒浓度有关,其变化趋势与总硒含量的一致。  相似文献   

7.
南海北部海域叶绿素a浓度时空特征遥感分析   总被引:4,自引:1,他引:3  
利用2007-2010年MODIS的L2级叶绿素a浓度产品作为数据基础, 对叶绿素a浓度年平均和月平均数据进行分级分区处理, 研究南海北部海域叶绿素a浓度时空分布特征及其与海洋环境因素的关系。初步研究结果表明:2007-2010年在南海北部海域叶绿素a浓度的高值区(>5.0 mg/m3)主要分布在广东省沿岸河流的入海口, 分布范围在夏季最大, 在春秋次之, 在冬季最小;叶绿素a浓度的次高值区(1.0~5.0 mg/m3)主要分布在海岸线到50 m等深线之间的海域, 分布范围夏冬较大, 能扩展到50 m等深线附近, 而春秋较小, 会退缩到50 m等深线以内;叶绿素a浓度的中值区(0.3~1.0 mg/m3)主要分布在50 m到100 m等深线之间的海域, 时空变化复杂;叶绿素a浓度的低值区(<0.3 mg/m3)主要分布在100 m等深线以外的海域, 其区域平均值夏季最低, 春秋次之, 冬季最高, 同时该区域叶绿素a浓度在春夏秋三季空间分布较均匀, 而冬季受季风和黑潮入侵影响空间分布较为复杂。南海北部海域海表叶绿素a浓度的时空变化特征与季风、沿岸河流、海流、海表温度等海洋环境因素的变化有关。  相似文献   

8.
有效氯对波吉卵囊藻生理活性的影响   总被引:2,自引:0,他引:2  
波吉卵囊藻Oocystis borgei是集约化对虾养殖系统中常见的一种优良微藻,能改善养殖水质,增强对虾的抗病能力。本文通过累积培养方法,研究了对虾养殖中常用含氯消毒剂对波吉卵囊藻的种群生长和代谢的影响。结果表明:含氯消毒剂对微藻种群生长有显著影响。有效氯浓度为0.5mg/L时,波吉卵囊藻的生理活性轻微下降:有效氯浓度为2.5mg/L时,引起波吉卵囊藻死亡,其叶绿素含量、藻体干重、光合作用和呼吸作用分别下降了64.72%,13.69%,38.95%和10.38%。且随浓度增加,毒性越大。用浓度小于0.5mg/L的有效氯来防治对虾疾病,不会破环以波吉卵囊为优势种群的微藻生态环境。  相似文献   

9.
厦门海域分粒级叶绿素a含量的分布特征   总被引:6,自引:0,他引:6  
据2002年12月至2004年2月间厦门海域6个航次分粒级叶绿素a含量的调 查资料,研究了该海域分粒级浮游植物叶绿素a含量的分布特征及其控制因子.结果 表明:厦门海域叶绿素a含量平均值为5.36mg/m3,各调查月份中,8月份的含量最 高(13.6mg/m3),5月的次之(5.33mg/m3),12、2月的含量较低.叶绿素a含量的水 平分布在冬季时较为均匀;春、夏季在宝珠屿海域出现最高值(33.28mg/m3),九龙江 口外出现次高值(13.84mg/m3).厦门海域全年以微型浮游植物占优势,小型浮游植 物在夏季高生物量时占比较高(41.O%),微微型浮游植物所占比例较小(年平均值 为9.7%).冬季低温是浮游植物生长的主要限制因子,春、夏季随着温度升高,营养 盐的缺乏限制了浮游植物的生长.  相似文献   

10.
九龙江河口水体叶绿素a含量和初级生产力的时空变化   总被引:2,自引:0,他引:2  
根据2009年春(5月)、夏(8月)、秋(11月)在九龙江河口水域进行的生态安全示范区综合外业调查资料,研究了九龙江河口水体叶绿素a含量和初级生产力的时空变化.结果表明,九龙江河口水体叶绿素a含量变化范围为0.77~15.89mg/m。,平均含量为3.11mg/m。;初级生产力变化范围为19.05~332.91mr,/(m。·d),平均值为103.51mg/(m。·d).叶绿素a含量均值以夏季的为最高(4.01mg/m。),其季节变化呈夏季〉春季〉秋季;初级生产力均值以春季的为最高[112.16mg/(m。·d)],季节变化呈春季〉夏季〉秋季的趋势.与本研究区上世纪90年代的调查结果比较,本次调查的表层水叶绿素a含量均值(3.11mg/m’)为1990年均值(2.24mg/m。)的1.3—1.6倍,而初级生产力均值[103.5mg/(m。·d)]则比1990年的[151.6mg/(m。·d)]降低了约32%.叶绿素a含量与初级生产力、可溶性硅酸盐含量、水温在这3个季节均显著正相关,与浮游植物密度的分布并不一致,二者的相关性并不显著.在高无机氮和高可溶性硅酸盐含量状态下,水温与活性磷酸盐含量对九龙江河口水体叶绿素a含量和初级生产力的时空变化起调控作用.  相似文献   

11.
台风对海洋叶绿素a浓度影响的延迟效应   总被引:2,自引:1,他引:1  
利用MODIS、SeaWiFS 3A资料详细分析了2000-2006年间西北太平洋海域主要台风对叶绿素a浓度的影响.结果发现,台风可导致叶绿素a浓度最大增长平均值为2.385倍,个别最高达10倍以上,且增长到最大值平均延迟5.94d;同时叶绿素a浓度最大值与无台风时叶绿素a浓度具有线性相关性,相关系数达0.889;叶绿素a浓度与相应的海域平均海水深度具有负的乘幂关系,其相关系数是0.87;台风后叶绿素a浓度的最大增长量与相应海域海水平均深度也呈负乘幂关系,其相关性略低于前者,相关系数为0.75.  相似文献   

12.
山东半岛东部诸岛水域叶绿素—a含量和初级生产力   总被引:1,自引:0,他引:1  
据1990.11-1991年8月期间,山东半岛东部诸岛水域调查资料,分析了该水域叶绿素-a含量的时空分布和初级生产力的分布与变化,此分布与该水域的温度和营养盐水含量密切相关。叶绿素-a含量的季节变化分三种类型,年变幅为0.11-12.81mg/m^3,年平均值为1.17mg/m^3。初级生产力夏季〉春季〉秋季〉冬季,年变幅为23.00-791.60mg.c/m^2.d年平均为152.0mg.c/m  相似文献   

13.
New maps of the mean monthly distribution of chlorophyll and the primary production in the Kara Sea were compiled using joint processing of CZCS (1978–1986), SeaWiFS (1998–2005), and MODIS (2002–2006) satellite data and field measurements. The annual primary production of phytoplankton is estimated at 22.3 × 106 t of C per year or 70 mg of C/m2 per day. The results of the calculations of the organic carbon budget in the Kara Sea are presented.  相似文献   

14.
The variability of Chlorophyll-a (Chl-a) distribution derived from MODIS (on Aqua and Terra platforms) and MERIS sensors have been compared with SeaWiFS data in the Arabian Sea. MODIS Aqua has overestimated the SeaWiFS Chl-a within 25–32% in the coastal turbid (eutrophic) waters and underestimated in open ocean waters with error within 20%. However, there is no significant bias (?0.1 on log-scale) observed as the slope is well within 0.97-1.1 (log transformed). MODIS-Terra has underestimated the Chl-a concentration in open ocean waters by about 29–31%, which is higher than MODIS-Aqua. MODIS-Terra is observed to be more accurate than MODIS-Aqua in the coastal waters. MERIS is overestimating the SeaWiFS Chl-a with log RMS error of ~0.15 and log bias of ~0.13–0.2. The differences in the Chl-a estimates between each sensor are possibly due to differences in the sensor design, bio-optical algorithms and also due to the time differences between the satellites over passes. We have examined that the MERIS is performing similar to SeaWiFS and the MODIS-Aqua (Terra) data are reliable in open ocean (coastal) waters. However, Chl-a retrieval algorithms need to be improved especially for coastal turbid waters to continue with SeaWiFS data for long-term studies.  相似文献   

15.
The response of chlorophyll a (Chl a) concentration to wind stress is analyzed in the South China Sea (SCS), using in-situ data of Chl a and remote sensing data (QuikScat-sea surface wind (SSW), AVHRR-sea surface temperature (SST), AVISO merged-sea level anomalies (SLA), SeaWiFSderived Chl a and MODIS Terra-derived Chl a) in August/September/October 2004, 2006 and 2009. The variability of SSW, SST and SLA 7 d before in-situ Chl a sampling (including the work day of in-situ Chl a sampling) with the same latitude and longitude of the study area are investigated, and the correlation coefficients are calculated between these hydrographic factors and in-situ Chl a concentration. The results show that the Chl a-SSW correlation coefficients at upper layers (such as 0 m and 25 m) are more significant than those at deeper layers (such as 50, 75 and 100 m) 1-3 d before, which indicates that there is a time lag of strong surface winds stimulating phytoplankton bloom. By analyzing the relationship among the daily remote sensing derived (RSderived) SSW, SST, SLA and 3 d averaged SeaWiFS/MODIS-derived Chl a concentration in the northern SCS in September 2004 and 2009 respectively, it shows that the intensity and speed of surface winds could have great influence on extend of Chl a increase. If surface winds reach 4-5 m/s over, Chl a concentration would increase 1-3 d after the process of strong surface winds in open sea area of the northern SCS mainly during September.  相似文献   

16.
The signal-to-noise ratio (SNR, or sensitivity) of an ocean color instrument is a critical parameter to determine the accuracy and precision of the data products. Yet published literature showed various formats in SNR specifications under different conditions, making a direct cross-sensor comparison difficult. Here, we compared the SNRs of GOCI spectral bands with those of SeaWiFS and MODIS/Aqua under the same radiance inputs. We also compared their ability to resolve small changes in the retrieved chlorophyll-a data products (Chl). While GOCI visible bands showed similar at-sensor SNRs to SeaWiFS, the near-infrared (NIR) bands showed significantly higher SNRs. Because the NIR bands were used for atmospheric correction, the increases in SNRs led to reduced noise in the retrieved Chl, as shown in the GOCI and SeaWiFS Chl products for Chl < 0.1 mg m?3. The noise in the retrieved products also depends on the retrieval algorithms in addition to the sensor SNR. When a new band-subtraction algorithm (the Ocean Color Index or OCI algorithm) was applied to the same GOCI remotesensing reflectance data derived from the GDPS software package, significant noise reduction was found in the Chl product for low concentrations (< 0.25 mg m?3), leading to product precision (??3% in Chl) comparable to those from MODIS/Aqua measurements. This is certainly a significant achievement, as GOCI spatial resolution is much higher than MODIS (500 m versus 1 km). In addition, artifacts across image mosaic edges over low-concentration waters have been removed nearly completely by the OCI algorithm. Data analyses also indicated that GOCI radiometric calibration requires further improvement.  相似文献   

17.
据1990年11月至1991年8月间调查资料,提出刘公岛水域内叶绿素-a含量的时空分布和初级生产力的分布与变化。指出此分布与该水域温度和营养盐含量密切相关。叶绿素-a含量以春季最高,冬季次之,秋季稍低,夏季最低。年变幅为0.21~2.45mg/m3,年平均值为1.02mg/m3。初级生产力以夏季最高,春季次之,秋季略低,冬季最低,年变幅为33.40~512.72mg·c/m2·d,年平均值为181.15mg·c/m2·d。  相似文献   

18.
In the present article, we introduce a high resolution sea surface temperature(SST) product generated daily by Korea Institute of Ocean Science and Technology(KIOST). The SST product is comprised of four sets of data including eight-hour and daily average SST data of 1 km resolution, and is based on the four infrared(IR) satellite SST data acquired by advanced very high resolution radiometer(AVHRR), Moderate Resolution Imaging Spectroradiometer(MODIS), Multifunctional Transport Satellites-2(MTSAT-2) Imager and Meteorological Imager(MI), two microwave radiometer SSTs acquired by Advanced Microwave Scanning Radiometer 2(AMSR2), and Wind SAT with in-situ temperature data. These input satellite and in-situ SST data are merged by using the optimal interpolation(OI) algorithm. The root-mean-square-errors(RMSEs) of satellite and in-situ data are used as a weighting value in the OI algorithm. As a pilot product, four SST data sets were generated daily from January to December 2013. In the comparison between the SSTs measured by moored buoys and the daily mean KIOST SSTs, the estimated RMSE was 0.71°C and the bias value was –0.08°C. The largest RMSE and bias were 0.86 and –0.26°C respectively, observed at a buoy site in the boundary region of warm and cold waters with increased physical variability in the Sea of Japan/East Sea. Other site near the coasts shows a lower RMSE value of 0.60°C than those at the open waters. To investigate the spatial distributions of SST, the Group for High Resolution Sea Surface Temperature(GHRSST) product was used in the comparison of temperature gradients, and it was shown that the KIOST SST product represents well the water mass structures around the Korean Peninsula. The KIOST SST product generated from both satellite and buoy data is expected to make substantial contribution to the Korea Operational Oceanographic System(KOOS) as an input parameter for data assimilation.  相似文献   

19.
烟台四十里湾叶绿素a浓度的时空分布特征及其影响机制   总被引:1,自引:0,他引:1  
沈春燕  施平  赵辉 《海洋科学》2014,38(9):33-38
本文利用2003~2012年MODIS(Moderate Resolution Imaging Spectrometer)卫星遥感数据,分析了四十里湾叶绿素a浓度的时空分布特征,并探讨其影响机制。结果表明,四十里湾叶绿素a浓度具有显著的时空分布特征。从空间分布来看,全年均是南部近岸较高,从西南的湾内向东北的湾外逐渐降低。逛荡河口正北约6 km海域在4~5、7~9月出现叶绿素a高值羽。从时间分布来看,四十里湾叶绿素a浓度夏季最高,春秋次之,冬季最低,5月份和8月份出现峰值,呈现温带海域特有的"双峰"特性。四十里湾年平均叶绿素a浓度呈现波动状态,波动范围约为6~12 mg/m3。四十里湾叶绿素a浓度的分布及变化与海表面温度成正相关,相关系数是0.41。另外,入海排污和海水养殖业等人类活动可能也是影响四十里湾叶绿素a浓度时空变化的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号