首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We determined 15N/14N ratios of total nitrogen in surface sediments and dated sediment cores to reconstruct the history of N-loading of the North Sea. The isotopic N composition in modern surface sediments is equivalent to and reflects the isotopic mixture of oceanic nitrate on the one hand (δ15N = 5‰) and the imprint of river-borne nitrogen input into the SE North Sea (δ15N up to 12‰ in estuaries of the SE North Sea) on the other hand. We compare the results with δ15N records from pre-industrial sediment intervals in cores from the Skagerrak and Kattegat areas, which both constitute significant depositional centres for N in the North Sea and the Baltic Sea/North Sea transition. As expected, isotopically enriched anthropogenic nitrogen was found in the two records from the Kattegat area, which is close to eutrophication sources on land. Enrichment of δ15N in cores from the Skagerrak – the largest sediment sink for nitrogen in the entire North Sea – was not significant and values were similar to those found in sediment layers representing pre-industrial conditions. We interpret this isotopic uniformity as an indication that most riverine reactive nitrogen with its characteristic isotopic signature is removed by denitrification in shallow shallow-water sediments before reaching the main sedimentary basin of the North Sea.  相似文献   

2.
Environmental genotoxicity was investigated at 82 locations encompassing different regions of the Baltic Sea. Micronuclei (MN) analysis was performed in erythrocytes of 1892 specimens of flounder Platichthys flesus, herring Clupea harengus and eelpout Zoarces viviparus, three of the most common native fish species of the Baltic Sea collected in 2009–2011. MN background levels in fish were determined using data obtained in 2001–2011 from 107 Baltic sites. Extremely high genotoxicity risk zones were found for flounder at 11 stations out of 16 in 2009 and 33 stations of 41 in 2010–2011, for herring, at 5 of 18 stations in 2009 and 20 of 43 stations in 2010–2011, in eelpout only at one out of 29 stations. The sampling stations were restricted mainly to the southern and eastern Baltic Sea offshore zones and in most of them, MN frequencies in flounder and herring significantly exceeded the reference and background levels of micronuclei. This is a first attempt to evaluate the background MN responses, as well as low, high and extremely high genotoxicity risk levels for native fish species.  相似文献   

3.
Data from three annual surveys, covering inshore and offshore waters of the southeastern North Sea, were analysed to study recruitment variability in dab (Limanda limanda) over the period 1978–1997. Geometric mean abundance of 0- to 5-group dab was estimated using general linear models. Juvenile dab (0- and 1-group) were found over the entire area, from inside the estuaries to 50 m depth offshore. Environmental conditions (water temperature, wind stress, turbidity) affected the catch rates. The potential errors in the estimates of year-class strength, caused by differences in catchability, are discussed. The inter-annual pattern of year-class strength appeared to be established between ages 1 and 2, suggesting that factors determining recruitment are not restricted to the pelagic early life phase only, but also operate during the demersal juvenile phase. Recruitment variability at age 2 was in the order of 50–60% and appears to be equal to, or lower than, recruitment variability in plaice and sole. These results contradict expectations based on the concentration hypothesis, which states that the degree of variation in recruitment is inversely related to the degree of concentration during early life phases.  相似文献   

4.
In May and September 1999 11 stations were sampled in the southern and central North Sea, located in the German Bight, eastern Oyster Ground and Dogger Bank. The study focused on the influence of particle mixing on transport of chlorophyll a to deeper sediment layers and vertical bacterial distribution (max. DEPTH=10 cm). The sampling stations were chosen to reflect a gradient in environmental conditions in the North Sea. The sampling stations differed in respect to redox potential (eH up to −243 mV in the German Bight and up to 274 mV in the offshore regions), silt content (up to 54% in the German Bight and 0·34% at the northern Dogger Bank) and different proportion of fresh organic material on total organic matter content (C/N ratios ranging from 9·27 in the German Bight up to 1·72 in the offshore sediments). Although bacterial densities (8·55×109 g−1in the German Bight up to 0·35×109 g−1in offshore sediments) were significantly correlated to chlorophyll a content in the sediment (P<0·01), inconsistencies in the temporal pattern of both variables in the surficial sediment layer suggested, that the dynamics of bacterial densities is generally controlled by food supply but also by other variables. The chlorophyll a content in the surficial sediments of the German Bight (up to 1·84 μg g−1) was significantly higher than in the Oyster Ground (up to 0·58 μg g−1) and the Dogger Bank area (up to 0·68 μg g−1). With increasing chlorophyll a input to the benthic realm a subsequent enhanced burial of this compound into deeper sediment layers was expected either by biological (bioturbation) or by physical sediment mixing. However, the vertical profile of chlorophyll a decreased steeply in the sediments of the German Bight. Contrary, subsurface peaks were measured in the offshore areas. It was concluded from these results, that the vertical distribution of organic matter in sediments is less limited by the quantitative input from the water column but concomitant with particle mixing itself. The extent and possible mechanisms of particle mixing in the different study areas in relation to specific environmental factors is discussed.  相似文献   

5.
Sea level changes in the Baltic Sea are dominated by internal, short-term variations that are mostly caused by the ephemeral nature of atmospheric conditions over the Baltic area. Tides are small and their influence decreases from western parts of the Baltic Sea to the Baltic Proper. Superimposed to the large short-term sea level changes (up to few decimeters from day to day) are seasonal and interannual variations (centimeters to decimeters). This study focuses on the comparison of sea surface heights obtained from observations and from a high resolution oceanographic model of the Baltic Sea. From this comparison, the accuracy of the modeled sea surface variations is evaluated, which is a necessary precondition for the further use of the oceanographic model in geodetic applications. The model reproduces all observed Baltic sea level variations very reliably with an accuracy of 5 to 9 cm (rms) for short-term variations (up to 2 months) and 8 cm (rms) for long-term variations (>2 months). An additional improvement of the model can be attained by including long-period sea level variations of the North Sea. The model performs well also in the case of extreme sea level events, as is shown for a major storm surge that occurred at the southern coast of the Baltic Sea in November 1995.  相似文献   

6.
The speciation of sedimentary sulfur (pyrite, acid volatile sulfides (AVS), S0, H2S, and sulfate) was analyzed in surface sediments recovered at different water depths from the northwestern margin of the Black Sea. Additionally, dissolved and dithionite-extractable iron were quantified, and the sulfur isotope ratios in pyrite were measured. Sulfur and iron cycling in surface sediments of the northwestern part of the Black Sea is largely influenced by (1) organic matter supply to the sediment, (2) availability of reactive iron compounds and (3) oxygen concentrations in the bottom waters. Biologically active, accumulating sediments just in front of the river deltas were characterized by high AVS contents and a fast depletion of sulfate concentration with depth, most likely due to high sulfate reduction rates (SRR). The δ34S values of pyrite in these sediments were relatively heavy (−8‰ to −21‰ vs. V-CDT). On the central shelf, where benthic mineralization rates are lower, re-oxidation processes may become more important and result in pyrite extremely depleted in δ34S (−39‰ to −46‰ vs. V-CDT). A high variability in δ34S values of pyrite in sediments from the shelf-edge (−6‰ to −46‰ vs. V-CDT) reflects characteristic fluctuations in the oxygen concentrations of bottom waters or varying sediment accumulation rates. During periods of oxic conditions or low sediment accumulation rates, re-oxidation processes became important resulting in low AVS concentrations and light δ34S values. Anoxic conditions in the bottom waters overlying shelf-edge sediments or periods of high accumulation rates are reflected in enhanced AVS contents and heavier sulfur isotope values. The sulfur and iron contents and the light and uniform pyrite isotopic composition (−37‰ to −39‰ vs. V-CDT) of sediments in the permanently anoxic deep sea (1494 m water depth) reflect the formation of pyrite in the upper part of the sulfidic water column and the anoxic surface sediment. The present study demonstrates that pyrite, which is extremely depleted in 34S, can be found in the Black Sea surface sediments that are positioned both above and below the chemocline, despite differences in biogeochemical and microbial controlling factors.  相似文献   

7.
As part of a joint workshop organised by the International Council for the Exploration of the Sea (ICES) and the Intergovernmental Oceanographic Commission (IOC) on biological effects monitoring techniques. dad (Limanda limanda) were examined from six spaced stations along a 200 km transect extending from near the mouth of the Elbe River out to the Dogger Bank in the North Sea. Based on historical data, differences in contaminant concentrations in sediments exist along the transect (lipophilic organic xenobiotics at the inshore sites and heavy metals offshore over the Dogger Bank). The most contaminated site sampled was the most inshore, the least contaminated was approximately midway along the transect, with contamination building up again over the farthest point along the transect, over the Dogger Bank. Multiple organs and tissues were examined for full pathology from each fish sampled. Only liver data are presented here (11–20 livers per station). The most significant lesions were considered to be well-developed foci of cellular alteration, high mitotic activity and high neutral lipid accumulation in livers from dab sampled from the most inshore site examined. Livers from the least-contaminated station showed minimal evidence of such changes. Foci of cellular alteration and neutral lipid accumulation were also seen in dab liver sampled from fish from the Dogger Bank site. Thus far, the hepatic changes seen correlate well with the most contaminated sites along the transect. The value of comprehensively examining the histopathology of an organ of toxicological significance, such as the liver in a European species of flatfish, is demonstrated.  相似文献   

8.
The ratio of oxygen-18 to oxygen-16 (expressed as per mille deviations from Vienna Standard Mean Ocean Water, δ18O) is reported for seawater samples collected from seven full-depth CTD casts in the northern North Atlantic between 20° and 41°W, 52° and 60°N. Water masses in the study region are distinguished by their δ18O composition, as are the processes involved in their formation. The isotopically heaviest surface waters occur in the eastern region where values of δ18O and salinity (S) lie on an evaporation–precipitation line with slope of 0.6 in δ18O–S space. Surface isotopic values become progressively lighter to the west of the region due to the addition of 18O-depleted precipitation. This appears to be mainly the meteoric water outflow from the Arctic rather than local precipitation. Surface samples near the southwest of the survey area (close to the Charlie Gibbs Fracture Zone) show a deviation in δ18O–S space from the precipitation mixing line due to the influence of sea ice meltwater. We speculate that this is the effect of the sea ice meltwater efflux from the Labrador Sea. Subpolar Mode Water (SPMW) is modified en route to the Labrador Sea where it forms Labrador Sea Water (LSW). LSW lies to the right (saline) side of the precipitation mixing line, indicating that there is a positive net sea ice formation from its source waters. We estimate that a sea ice deficit of ≈250 km3 is incorporated annually into LSW. This ice forms further north from the Labrador Sea, but its effect is transferred to the Labrador Sea via, e.g. the East Greenland Current. East Greenland Current waters are relatively fresh due to dilution with a large amount of meteoric water, but also contain waters that have had a significant amount of sea ice formed from them. The Northeast Atlantic Deep Water (NEADW, δ18O=0.22‰) and Northwest Atlantic Bottom Waters (NWABW, δ18O=0.13‰) are isotopically distinct reflecting different formation and mixing processes. NEADW lies on the North Atlantic precipitation mixing line in δ18O–salinity space, whereas NWABW lies between NEADW and LSW on δ18O–salinity plots. The offset of NWABW relative to the North Atlantic precipitation mixing line is partially due to entrainment of LSW by the Denmark Strait overflow water during its overflow of the Denmark Strait sill. In the eastern basin, lower deep water (LDW, modified Antarctic bottom water) is identified as far north as 55°N. This LDW has δ18O of 0.13‰, making it quite distinct from NEADW. It is also warmer than NWABW, despite having a similar isotopic composition to this latter water mass.  相似文献   

9.
A long-term study within the pilot environmental specimen bank programme of the Federal Republic of Germany on arsenic levels in coastal and open seawater and their reflection in the brown seaweed (Fucus vesiculosus) has been performed. Dissolved arsenic was on average 0.76 (range 0.45–1.11) μgl−1 for 17 sampling stations in the Baltic Sea, whereas contents of dissolved arsenic are somewhat higher in shallow waters of the coastal zone of the North Sea. Total arsenic levels in algae ranged up to 40 mg kg−1 (dry weight) and showed for the four locations studied obvious seasonal variations for comparatively nonpolluted or nondisturbed locations only. However, probably due to biological influences, the results obtained so far indicate that composite samples integrating a one year period are supposed to be the best strategy for future environmental specimen banking. Using a new efficient speciation technique the percentage of chemically stable organoarsenic compounds in the investigated algae has been found to be 95% of the total arsenic content and thus somewhat lower than in teleost fish. For comparison, typical data for a few other algae species from the Baltic and the Mediterranean Sea are also shown.  相似文献   

10.
Stable nitrogen isotopic ratios were measured in sinking particles and surface sediments from the South China Sea (SCS) in order to study recent nitrogen sources and degradation. Average δ15N values of 16 sediment traps deployed at seven locations in the northern, central and southern SCS were uniformly low, ranging between 2.7 and 4.5‰ with a winter minimum in the northern and central SCS. Enhanced nitrogen contents and δ15N values were noted in samples affected by swimmers, comprising between 5 and 20% of total nitrogen fluxes. Nitrate sources were subsurface waters from the western Pacific, which were isotopically depleted due to the remineralization of nitrogen from nitrogen fixation in surface waters. Nitrogen fixation in the SCS contributed up to 20% to the settling particles. In the southern SCS, resuspended matter close to the shelf added to the sinking particulates. The long-term trap record from the central SCS revealed decreasing δ15N values during the 1990s, which correspond with findings from the North Pacific Subtropical Gyre and may be attributable to increased nitrogen fixation due to global warming-related stratification. This trend may be restricted to the 1990s but could also persist due to the projection of more frequent occurrence of El Niño conditions.The δ15N increase from swimmer-free trap averages of 2.7–3.6‰ to values of 5–6‰ in underlying deep-sea sediments was in the same range as in other deep ocean areas. Similar to results from the northern Indian Ocean, this increase could be related to isotopic enrichment during amino acid degradation. The lowest sedimentary δ15N values characterize the Pinatubo ash layer deposited off Luzon in an event of mass sedimentation in 1991. The fast deposition of organic matter drawn from the surface waters with the ash in the form of vertical density currents evidently preserved the planktonic δ15N signal.  相似文献   

11.
The distribution and characteristics of coloured dissolved organic matter (CDOM) in the Baltic – North Sea transition zone were studied. The aim was to assess the validity of predicting CDOM absorption in the region on the basis of water mass mixing alone and demonstrate the utility of CDOM as an indicator of water mass mixing in coastal seas. A three-end-member mixing model representing the three major allochthonous CDOM sources was sufficient to describe the patterns in CDOM absorption distribution observed. The three-end-member water masses were the: Baltic outflow, German Bight and the central North Sea. Previously, it was thought that water from the German Bight transported northwards in the Jutland coastal current only sporadically influenced mixing between the Baltic and North Sea. The results from this study show that water from the German Bight is detectable at salinities down to 12 in the Kattegat and Belt Sea. On average, 23% of the CDOM in bottom waters of the Kattegat, Great Belt, Belt Sea, Arkona Sea and the Sound originated from the German Bight. Using this conservative mixing model approach, local CDOM inputs were detectable but found to be limited, representing only 0.25% of CDOM in the surface waters of the Kattegat and Belt Sea. The conservative mixing of CDOM makes it possible to predict its distribution and characteristics and offers a powerful tool for tracing water mass mixing in the region. The results also emphasize the need to include the Jutland Coastal current in hydrodynamic models for the region.  相似文献   

12.
Primary production, nutrient concentrations, phytoplankton biomass (incl. chlorophyll a) and water transparency (Secchi depth), are important indicators of eutrophication. Earlier basin-wide primary production estimates for the Baltic Sea, a shallow shelf sea, were based mainly on open-sea data, neglecting the fundamentally different conditions in the large river plumes, which might have substantially higher production. Mean values of the period 1993–1997 of nutrient concentrations (phosphate, nitrate, ammonium and silicate), phytoplankton biomass, chlorophyll a (chl a) concentration, turbidity and primary production were calculated in the plumes of the rivers Oder, Vistula and Daugava and Klaipeda Strait as well as the open waters of the Arkona Sea, Bornholm Sea, eastern Gotland Sea and the Gulf of Riga. In the plumes, these values, except for primary production, were significantly higher than in the open waters. N:P ratios in the plumes were >16 (with some exceptions in summer and autumn), indicating potential P-limitation of phytoplankton growth, whereas they were <16 in the open Baltic Proper, indicating potential N-limitation. On the basis of in situ phytoplankton primary production, phytoplankton biomass and nutrient concentrations, the large river plumes and the Gulf of Riga could be characterized as eutrophic and the outer parts of the coastal waters and the open sea as mesotrophic. Using salinity to define the border of the plumes, their mean extension was calculated by means of a circulation model. Taking into account the contribution of coastal waters, the primary production in the Baltic Proper and the Gulf of Riga was 42·6 and 4·3×106 t C yr−1, respectively. Hence, an annual phytoplankton primary production in the whole Baltic Sea was estimated at 62×106 t C yr−1. The separate consideration of the plumes had only a minor effect on the estimation of total primary production in comparison with an estimate based on open sea data only. There is evidence for a doubling of primary production in the last two decades. Moreover, a replacement of diatoms by dinoflagellates during the spring bloom was noticed in the open sea but not in the coastal waters. A scheme for trophic classification of the Baltic Sea, based on phytoplankton primary production and biomass, chl a and nutrient concentrations, is proposed.  相似文献   

13.
Bulk deposition samples were collected during a summer (1997) and a winter (1998) measurement campaign at four coastal stations along the southern Baltic Sea coast and on the Island of Gotland. The data were used to construct Pb and Cd deposition fields over the Baltic Sea. A weak gradient with decreasing deposition rates from the southwest towards the east and north was obtained for Pb. In the case of Cd, the spatial distribution pattern was characterized by an extreme deposition maximum at the Polish station on the Hel Peninsula. The total atmospheric input of Pb and Cd into the Baltic Sea was 550 and 33 t/year, respectively, and exceeds the riverine input by approximately about 50%. Previous measurement-based estimates were higher by a factor 2–3 and indicate a decrease of the atmospheric deposition during the past 10–15 years. The comparison with modelled deposition data yielded partly large differences and was impaired by the fact that 1990 emission inventories were used whereas our measurements were performed in 1997/1998.Relating our deposition estimate and the Pb/Cd input by rivers to the mean concentrations in Baltic Sea water, residence times of 0.29 and 3.6 years were obtained for Pb and Cd, respectively.  相似文献   

14.
In this study we used two stable isotopes, δ13C and δ18O, for water mass classification in the coastal region off eastern Hokkaido. δ13C* values, which were corrected for the biological effect, and δ 18O values up to 300 m depth suggested that the isotopic character of the onshore and offshore water in the southern Okhotsk Sea, the Nemuro Strait and the western North Pacific could be explained by the mixing of three source waters: the Oyashio water (OYW), Soya Warm Current water (SWCW) and East Sakhalin Current water (ESCW). In summer, δ 13C*-δ 18O plots indicated mixing between SWCW from the southern Okhotsk Sea and OYW in the Pacific coast of southeastern Hokkaido, while temperature-salinity plots of the onshore water showed minimal difference from the offshore OYW. In winter, on the other hand, the mixed water of ESCW and OYW (or SWCW) appeared in the Pacific coastal region, distributed as cold, low salinity onshore water. Finally, we estimated mixing ratios of OYW, SWCW and ESCW in the coastal region of western North Pacific using their mean values of δ 13C* and δ 18O as endmembers. These results suggest seasonal and yearly changes of water mass combination en route from the southern Okhotsk Sea to the western North Pacific.  相似文献   

15.
The aim of the research was to investigate the diet of herring at different stages of its life cycle. For that purpose feeding of 0-group and immature herring in the Barents Sea, as well as of mature fish from the Norwegian Sea, was studied. 0-Group herring was sampled in the Barents Sea in August–September 2002–2005 during the international 0-group and trawl-acoustic survey of pelagic fish, as well as during the trawl-acoustic survey of demersal fish in November–December 2003–2004. Stomach samples of immature herring (1–3 years) were collected in late May and early of June 2001 and 2005 in the south-western part of the Barents Sea during the trawl-acoustic survey for young herring. Stomach samples of mature herring were collected in the Norwegian Sea in 1996, 1998, 1999, 2001, and 2002 in the course of the international trawl-acoustic survey of pelagic fish. Feeding intensity of herring of all age groups varied considerably between years and this was probably associated with availability and accessibility of their prey. The 0-group herring was found to have the most diverse diet, including 31 different taxa. In August–September, copepods, euphausiids, Cladocera, and larvae Bivalvia were most frequent in the diet of 0-group herring, but euphausiids and Calanus finmarchicus were the main prey taken. In November–December, euphausiids and tunicates were major prey groups. It was found that C. finmarchicus in the diet of 0-group herring was replaced by larval and adult euphausiids with increasing fish length. C. finmarchicus was the principal prey of immature herring and dominated in the diet of both small and large individuals and mainly older copepodites of C. finmarchicus were taken. Larval and adult euphausiids were found in stomachs of immature herring as well, but their share was not large. The importance of different prey for mature herring in the Norwegian Sea varied depending on the feeding area and length of the herring. On the whole C. finmarchicus and 0-group fish were the most important prey for mature herring diet, but fish prey were only important in a small sampling area. Hyperiids, euphausiids, tunicates, and pteropods were less important prey, and in 2002 herring actively consumed herring fry and redfish larvae.  相似文献   

16.
Fouling was investigated on Marathon Kinsale Field Alpha and Bravo platforms in the Celtic Sea between June 1978 and June 1981. In shallow depths, algae dominated, chiefly Polysiphonia brodiaei and Ulva lactuca. Mussels formed the dominant fouling organism between 6 and 20 m depth, below which were zones of Metridium senile and Alcyonium digitatum, serpulids and the deep water barnacle Balanus hameri. In September 1979 mussels exceeded 2500 m−2 with a modal length of 42 mm. By June 1981, modal length had increased to 67 mm at −4 m and 73 mm at −18 m (maximum size 97 mm). Populations on Bravo were similar. Comparison is made with growth rates on North Sea platforms. On Alpha, percentage cover m−2 in March 1980 was much greater at −4 m than at −18 m, but mean thickness was similar. At −18 m mussels were a heavier fouler on Bravo than Alpha. On Alpha mussel weight did not show a linear relationship with percentage cover.  相似文献   

17.
The dynamics controlling the response of the Baltic Sea to changed atmospheric and hydrologic forcing are reviewed and demonstrated using simple models. The response time for salt is 30 times longer than for heat in the Baltic Sea. In the course of a year, the Baltic Sea renews most of its heat but only about 3% of its salt. On the seasonal scale, surface temperature and ice-coverage are controlled by the atmospheric conditions over the Baltic Sea as demonstrated by e.g. the strong inter-annual variations in winter temperature and ice-coverage due to variations in dominating wind directions causing alternating mild and cold winters. The response of surface temperature and ice-coverage in the Baltic Sea to modest climate change may therefore be predicted using existing statistics. Due to the long response time in combination with complicated dynamics, the response of the salinity of the Baltic Sea cannot be predicted using existing statistics but has to be computed from mechanistic models. Salinity changes primarily through changes in the two major forcing factors: the supply of freshwater and the low-frequency sea level fluctuations in the Kattegat. The sensitivity of Baltic Sea salinity to changed freshwater supply is investigated using a simple mechanistic steady-state model that includes baroclinic geostrophic outflow from the Kattegat, the major dynamical factor controlling the freshwater content in the Kattegat and thereby the salinity of water flowing into the Baltic Sea. The computed sensitivity of Baltic Sea surface salinity to changes of freshwater supply is similar to earlier published estimates from time-dependent dynamical models with higher resolution. According to the model, the Baltic Sea would become fresh at a mean freshwater supply of about 60 000 m3 s−1, i.e. a 300% increase of the contemporary supply. If the freshwater supply in the different basins increased in proportion to the present-day supply, the Bothnian Bay would become fresh already at a freshwater supply of about 37 000 m3 s−1 and the Bothnian Sea at a supply of about 45 000 m3 s−1. The assumption of baroclinic geostrophic outflow from the Kattegat, crucial for the salinity response of the Baltic Sea to changed freshwater supply, is validated using daily salinity profiles for the period 1931–1977 from lightship Läsö Nord.  相似文献   

18.
Changes in the biomass and species composition of phytoplankton may reflect major shifts in environmental conditions. We investigated relationships between the late summer biomass of different phytoplankton taxa and environmental factors, and their long-term (1979–2003) trends in two areas of the Baltic Sea, the northern Baltic proper (NBP) and the Gulf of Finland (GF), with statistical analyses. An increasing trend was found in late summer temperature and chlorophyll a of the surface water layer (0–10 m) in both areas. There was also a significant decrease in summer salinity and an increase in winter dissolved inorganic nitrogen to phosphorus (DIN:DIP) ratio in the NBP, as well as increases in winter DIN concentrations and DIN:SiO4 ratio in the GF. Simultaneously, the biomass of chrysophytes and chlorophytes increased in both areas. In the NBP, also the biomass of dinophytes increased and that of euglenophytes decreased, whereas in the GF, cyanobacteria increased and cryptophytes decreased. Redundancy analysis (RDA) indicated that summer temperature and winter DIN concentration were the most important factors with respect to changes in the phytoplankton community structure. Thus, the phytoplankton communities seem to reflect both hydrographic changes and the ongoing eutrophication process in the northern Baltic Sea.  相似文献   

19.
A three-dimensional, eddy-permitting ocean circulation model with implemented bottom boundary layer model and flux-corrected transport scheme is used to calculate the pathways and ages of various water masses in the Baltic Sea. The agreement between simulated and observed temperature and salinity profiles of the period 1980–2004 is satisfactory. Especially the renewal of the deep water in the Baltic proper by gravity-driven dense bottom flows is better simulated than in previous versions of the model. Based upon these model results details of the mean circulation are analyzed. For instance, it is found that after the major Baltic inflow in January 2003 saline water passing the Słupsk Furrow flows directly towards northeast along the eastern slope of the Hoburg Channel. However, after the baroclinic summer inflow in August/September 2002 the deep water flow spreads along the southwestern slope of the Gdansk Basin. Further, the model results show that the patterns of mean vertical advective fluxes across the halocline that close the large-scale vertical circulation are rather patchy. Mainly within distinct areas are particles of the saline inflow water advected vertically from the deep water into the surface layer. To analyze the time scales of the circulation mean ages of various water masses are calculated. It is found that at the sea surface of the Bornholm Basin, Gotland Basin, Bothnian Sea, and Bothnian Bay the mean ages associated to inflowing water from Kattegat amount to 26–30, 28–34, 34–38, and 38–42 years, respectively. Largest mean sea surface ages of more than 30 years associated to the freshwater of the rivers are found in the central Gotland Basin and Belt Sea. At the bottom the mean ages are largest in the western Gotland Basin and amount to more than 36 years. In the Baltic proper vertical gradients of ages associated to the freshwater inflow are smaller than in the case of inflowing saltwater from Kattegat indicating an efficient recirculation of freshwater in the Baltic Sea.  相似文献   

20.
A three-dimensional ecosystem model for the North Sea which includes competition between Pseudocalanus elongatus and the rest of the zooplankton biomass was applied to describe the seasonal cycle of zooplankton in 2003–2004. The paper presents the comparison of simulated stage-resolved abundances with copepod counts at several stations in the German Bight during the GLOBEC-Germany project from February to October 2004. A validation of influential state variables gives confidence that the model is able to calculate reliably the stage development and abundances of P. elongatus as well as the range of bulk zooplankton biomass, and thus the ratio of population biomass to total biomass. In the German Bight, the population is below 20% in spring. The ratio increases up to 50% during summer. The number of generations was estimated from peaks in egg abundance to about 4–8 generations of P. elongatus in the southern North Sea. A mean of four generations per year were estimated in the central North Sea, six to eight generations northwest of the Dogger Bank (tails end) and five generations in the German Bight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号