首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Instead of approximation formula ln(E(t)/E(0)) = [(a ? bt)t/(c + T)] commonly used at present for representing dependence of pressure of saturated streams of liquid water E upon temperature we suggested new approximation formula of greater accuracy in the form ln(E(t)/E(0)) = [(A ? Bt + Ct 2)t/T], where t and T are temperature in °C and K respectively. For this formula with parameters A = 19.846, B = 8.97 × 10?3, C = 1.248 × 10?5 and E(0) = 6.1121 GPa with ITS-90 temperature scale and for temperature range from 0°C to 110°C relative difference of approximation applying six parameter formula by W. Wagner and A. Pruß 2002, developed for positive temperatures, is less than 0.005%, that is approximately 15 times less than accuracy obtained with the firs formula. Increase of temperature range results in relative difference increasing, but for even temperature range from 0°C to 220°C it does not higher than 0.1%. For negative temperatures relative difference between our formula and a formula of D. M. Murphy and T. Koop, 2005, is less than 0.1% for temperatures higher than ?25°C. This paper also presents values of coefficients for approximation of Goff and Grach formula recommended by IMO. The procedure of finding dew point T d for known water steam pressure e n based on our formula adds up to solving an algebraic equation of a third degree, which coefficients are presented in this paper. For simplifying this procedure this paper also includes approximation ratio applying a coefficient A noted above, in the form T d (e n ) = \(\frac{{AT_0 }}{{A - \varepsilon }}\) + 0.0866?2 + 0.0116?10/3, where ? = ln(e n /E(T 0)). Error of dew point recovery in this ratio is less than 0.005 K within the range from 0 to 50°C.  相似文献   

2.
The spatiotemporal variability of equatorial Pacific upper ocean heat content (HC) and subsurface heat during two types of El Niño-Southern Oscillation (ENSO), namely eastern and central Pacific (EP and CP) types, is investigated using subsurface ocean heat budget analysis. Results show that HC tendencies during both types of ENSO are mainly controlled by oceanic heat advection beneath the mixed layer to the thermocline, and the role of net surface heat flux can be neglected. The most important three terms are the zonal and vertical advections of anomalous heat by climatological currents (QU 0 T′, QW 0 T′) and zonal advection of climatological heat by anomalous current (QUT 0). The large contribution of QU 0 T′ extends from west to east along the equatorial Pacific. The considerable contribution of QUT 0 is confined to the east of 160°W, and that of the QW 0 T′ is observed in the central Pacific between 180°E and 120°W. In particular, a major contribution of QW 0 T′ is also observed in the far eastern Pacific east of 100°W during EP ENSO. There is also a small contribution from meridional advection of climatological heat by anomalous current (QVT 0). In contrast, the meridional advection of anomalous heat by climatological currents (QV 0 T′) and vertical advection of climatological heat by anomalous current (QWT 0) are two damping factors in the HC tendency, with the former dominating. Differences in spatial distribution of the heat advection associated with the two types of ENSO are also presented. We define a warm water heat index (WWH) as integrated heat content above 26 kg m?3 potential density (26σ ? ) isopycnal depth within 130°E–80°W and 5°S–5°N. Further examination suggests that the recharge–discharge of WWH is involved in both types of El Niño, though with some differences. First, it takes about 42 (55) months for the evolution of a recharge–discharge cycle during an EP (CP) ENSO. Second, the EP El Niño event peaks during the discharge phase, 7–8 months after the recharge time. The CP El Niño peaks during the recharge phase, 4–5 months before the recharge time. The locations of HC anomalies in the El Niño mature phase relative to those at recharged time explain why the EP and CP El Niño peak in different stages of the recharge–discharge process.  相似文献   

3.
Production parameters of surface phytoplankton were measured along three transects: La Manche-Cape Town (I); Cape Town-54°S (II); 0°-49°W (along 54°S) (III). The Canary upwelling waters were most productive along transect I, where the surface chlorophyll a (Chl 0) and the surface primary production (PP 0) were as high as 4.3 mg/m3 and 173 mg C/m3 per day, respectively. Mosaic patterns in the distribution of these parameters were recorded in the northeastern regions of the South Subtropical Anticyclonic Gyre (Chl 0 = 0.03–0.35 mg/m3; PP 0 = 1.6–12.6 mg C/m3 per day). Along transect II, the average twofold southward increase in Chl 0 (from 0.2 to 0.4 mg/m3) and the concurrent decline of the phytoplankton assimilation activity ( AN 0) resulted in deviations from typical latitudinal changes inPP 0. At most sites, PP 0 values varied between 6 and 15 mg C/m3 per day. Negligible changes in Chl 0 (0.36–0.85 mg/m3), PP 0 (8–19 mg C/m3 per day), and AN 0 (0.7–1.6 mg C/mg chl a per hour) were registered for the oceanic waters along transect III. Along all the transects, PP 0 depended on Chl 0 to a greater extent than AN 0. The values of the latter parameter were largely determined by the water temperature and showed a slight correlation with the insolation. Along transect II, the integrated primary production (PP int) and the layer-integrated chlorophyll a in the upper 200 m (Chl 0–200) generally varied from 180 to 360 mg C/m2 per day and from 30 to 70 mg/m2, respectively. In the Polar Front region, an increase in Chl 0–200, PP int, Chl 0, and PP 0 up to respective values of 190 mg/m2, 520 mg C/m2 per day, 1.2 mg/m3, and 32 mg C/m3 per day was observed. A comparison of the water column (0–100 m) stability with the vertical distribution of the primary production and chlorophyll content along transect II implies that the thick (>100 m) upper mixed layer (UML) formed in response to the strong water cooling and wind forcing was largely responsible for the limited primary production in the Subantarctic and Antarctic regions. The large UML thickness resulted in an intense removal of plant cells from the photosynthetic layer and light starvation of a significant (up to 60%) part of the phytoplankton community.  相似文献   

4.
A long-term mean turbulent mixing in the depth range of 200–1000 m produced by breaking of internal waves across the middle and low latitudes (40°S–40°N) of the Pacific between 160°W and 140°W is examined by applying fine-scale parameterization depending on strain variance to 8-year (2005–2012) Argo float data. Results show that elevated turbulent dissipation rate (ε) is related to significant topographic regions, along the equator, and on the northern side of 20°N spanning to 24°N throughout the depth range. Two patterns of latitudinal variations of ε and the corresponding diffusivity (Kρ) for different depth ranges are confirmed: One is for 200–450 m with significant larger ε and Kρ, and the maximum values are obtained between 4°N and 6°N, where eddy kinetic energy also reaches its maximum; The other is for 350–1000 m with smaller ε and Kρ, and the maximum values are obtained near the equator, and between 18°S and 12°S in the southern hemisphere, 20°N and 22°N in the northern hemisphere. Most elevated turbulent dissipation in the depth range of 350–1000 m relates to rough bottom roughness (correlation coefficient?=?0.63), excluding the equatorial area. In the temporal mean field, energy flux from surface wind stress to inertial motions is not significant enough to account for the relatively intensified turbulent mixing in the upper layer.  相似文献   

5.
The species composition, density, biomass, and distribution of zooplankton of the northeastern Sakhalin shelf, Sea of Okhotsk (Chaivo, Pil’tunskii, and Morskoi regions) were studied in October 2014. Zooplankton was represented by 15 taxonomic groups, which were dominated by Copepoda (13 species). The average density and biomass was highest in the Chaivo region (14112 ± 4322 ind./m3, 395 ± 107 mg/m3) and in the Pil’tunskii region (16692 ± 10707 ind./m3, 346 ± 233 mg/m3); the abundance of detected taxonomic groups was minimal (8–12). The average density and biomass of zooplankton was up to 4304 ± 2441 ind./m3, 133 ± 77 mg/m3 in the Morskoi region and increased with depth; the abundance of taxa was maximum (15). Four species of copepods made up the majority of the density and biomass of zooplankton: Acartia hudsonica, Eurytemora herdmani, Pseudocalanus newmani, and Oithona similis. In the Chaivo region, species of the genera Acartia, Eurytemora, and Oithona dominated and subdominated; in Pil’tunskii region, species of the genera Acartia and Oithona dominated and subdominated; and in the Morskoi region, species of the genera Oithona, Pseudocalanus, and Acartia dominated and subdominated.  相似文献   

6.
Results obtained from simulating the propagation of infrasonic waves from the Chelyabinsk meteoroid explosion observed on February 15, 2013, are given. The pseudodifferential parabolic equation (PDPE) method has been used for calculations. Data on infrasonic waves recorded at the IS31 station (Aktyubinsk, Kazakhstan), located 542.7 km from the likely location of the explosion, have been analyzed. Six infrasonic arrivals (isolated clearly defined pulse signals) were recorded. It is shown that the first “fast” arrival (F) corresponds to the propagation of infrasound in a surface acoustic waveguide. The rest of the arrivals (T1–T5) are thermospheric. The agreement between the results of calculations based on the PDPE method and experimental data is satisfactory. The energy E of the explosion has been estimated using two methods. One of these methods is based on the law of conservation of the acoustic pulse I, which is a product of the wave profile area S/2 of the signal under analysis and the distance to its source E I [kt] = 1.38 × 10–10 (I [kg/s])1.482. The other method is based on the relation between the energy of explosion and the dominant period T of recorded signal E T [kt] = 1.02 × (T [s]2/σ)3/2, where σ is the dimensionless distance determining the degree of nonlinear effects during the propagation of sound along ray trajectories. According to the data, the explosion energy E I,T ranges from 1.87 to 32 kt TNT.  相似文献   

7.
太平洋褶柔鱼为大洋性经济鱼种,具有一年生命周期,其资源变动受气候和海洋环境条件的显著影响。本研究根据日本提供的2003-2012年太平洋褶柔鱼冬生群体的渔业统计数据,结合产卵场环境数据以及尼诺指数ONI(定义为Niño 3.4区海表温度距平值),分析不同气候条件下(厄尔尼诺和拉尼娜)太平洋褶柔鱼冬生群体产卵场海表温度(SST)、叶绿素a(Chl-a)浓度以及适宜产卵面积(SSA)的变动情况及对其资源丰度(CPUE)的影响。结果表明,太平洋褶柔鱼冬生群体产卵场SST、Chl-a浓度和SSA具有明显的季节性变化。相关分析表明,各年CPUE与Chl-a浓度以及SSA具有显著的正相关关系(p<0.05),但与SST相关性不显著(p>0.05)。此外,厄尔尼诺和拉尼娜事件通过驱动太平洋褶柔鱼冬生群体产卵场SSA和关键海域(25°-29°N,122.5°-130.5°E)内的Chl-a空间分布和大小变化,从而改变其资源丰度,但影响作用随各异常事件的强度不同而变化,具体表现为:发生弱强度厄尔尼诺事件时,产卵场SSA较高,Chl-a浓度处于较低水平,导致资源补充量处于较低水平,CPUE降低;发生中等强度厄尔尼诺事件时,产卵场SSA较低,但Chl-a浓度处于较高水平,导致资源补充量增加,CPUE处于上升水平;发生中等强度拉尼娜事件时,产卵场SSA和Chl-a浓度均处于较高水平,资源补充量显著增加,CPUE显著升高。研究表明,厄尔尼诺和拉尼娜事件对太平洋褶柔鱼冬生群体产卵场摄食孵化环境和资源丰度变动具有显著影响。  相似文献   

8.
Despite its potential significance for industrial utilization, any activities associated with the mining of manganese (Mn) nodules might have substantial impacts on benthic ecosystems. Because microorganisms respond quickly to changing environmental conditions, a study of microbial communities provides a relevant proxy to assess possible changes in benthic ecosystems associated with mining activities. We investigated fine-scale microbial community composition and diversity inside and on the surface of Mn nodules and in nearby deep-sea sediments in the Korea Deep Ocean Study (KODOS) area located in the Clarion-Clipperton Fracture Zone (CCFZ) of the northeast equatorial Pacific. Although microbial cell density was lower within nodules (3.21 × 106 cells g-1) than in sediment (2.14 × 108 cells g-1), nodules provided a unique habitat for microorganisms. Manganese-oxidizing bacteria including Hyphomicrobium and Aurantimonas in Alphaproteobacteria and Marinobacter in Gammaproteobacteria were abundant in nodules, which implied that these bacteria play a significant role in nodule formation. In contrast, Idiomarina in Gammaproteobacteria and Erythrobacter and Sulfitobacter in Alphaproteobacteria were abundant in sediments. Meanwhile, Thaumarchaeota, a phylum that consists of ammonia-oxidizing chemolithoautotrophs, were the predominant archaeal group both in nodules and sediment. Overall, microbial communities in Mn nodules were unique compared to those observed in sediments. Furthermore, the phylogenetic composition of microorganisms in the KODOS area was distinguishable from that in the nodule provinces claimed by China and Germany in the CCFZ and nodule fields in the central South Pacific Gyre, respectively.  相似文献   

9.
2012年夏季海南岛东岸上升流区的混合观测   总被引:1,自引:0,他引:1  
The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in the coastal waters, which are 3℃ cooler than the offshore waters and have a salinity 1.0 greater than that of the offshore waters. The magnitude of the dissipation rate of turbulent kinetic energy ε in the upwelling region is O(10–9 W/kg), which is comparable to the general oceanic dissipation. The inferred eddy diffusivity K_ρ is O(10–6 m~2/s), which is one order of magnitude lower than that in the open ocean. The values are elevated to K_ρ≈O(10–4 m~2/s) near the boundaries. Weak mixing in the upwelling region is consistent with weak instability as a result of moderate shears versus strong stratifications by the joint influence of surface heating and upwelling of cold water.The validity of two fine-scale structure mixing parameterization models are tested by comparison with the observed dissipation rates. The results indicate that the model developed by Mac Kinnon and Gregg in 2003 provides relatively better estimates with magnitudes close to the observations. Mixing parameterization models need to be further improved in the coastal upwelling region.  相似文献   

10.
Multidisciplinary oceanic investigation was undertaken in Aug–Sep. 2003 along a transect from Northwestern (Busan, Korea) to Southeastern Pacific (Talcahuano, Chile) to understand the physical, chemical and biological features in the surface water, and to depict their interaction with the atmosphere. Among the twenty parameters measured, we describe the physical, chemical and biological features. Physico-chemical data were analyzed in conjunction with the geographic position and yielded 7 peculiar surface water masses. The first water mass (28.4°N, 130.8°E to 21.5°N, 139.5°E) was warm and low in phosphate and nitrate content, and high in silicate. The concentration of phytoplankton pigment was one of the lowest. The second (20.4°N, 140.7°E to 2.2°S, 162.9°E) was the warmest and the least saline. Nitrate and phosphate concentration were one of the lowest. Chlorophyll a (Chl a) concentration was the lowest among the surface waters. The third (3.4°S, 164.0°E to 14.5°S, 173.3°E) was warm. Nitrate concentration was the lowest. CHL-a, peridinin (Perid), violaxanthin (Viola), zeaxanthin (Zea), chlorophyll-b (Chl b) and β-CAR were abundant. The fourth (18.6°S, 177.5°E to 31.8°S, 123.9°W) was saline and poor in nutrient concentration. The contributions of 19′-butanoyloxyfucoxanthin (But-fuco), 19′-hexanoyloxyfucoxanthin (Hex-fuco), and CHL b to CHL a were non-negligible. The fifth (32.4°S, 122.1°W to 33.8°S, 117.2°W) was relatively cold and well oxygenated. Concentration of Fuco, But-fuco, Hex-fuco and Chl b was high. The sixth (34.2°S, 115.4°W to 37.4°S, 92.1°W) was cold, well oxygenated and enriched with phosphate and nitrate. Concentration of phytoplankton pigment was, however, one of the lowest. The seventh, located off the Chilean coast, from 37.2°S, 87.2°W to 36.1°S, 74.1°W was well oxygenated and highly enriched with nitrate and phosphate. Phytoplankton pigments such as Fuco, Perid, But-fico, and Hex-fuco were rich. The 7 surface water masses are partially attributed to Kuroshio Current, North Equatorial Current and North Equatorial Countercurrent, South Equatorial current, South Pacific Subtropical Gyre, South Pacific Current, Subtropical Front and Chilean coastal water. The differences in physicochemical characteristics and the history of the surface water resulted in difference in quantity and composition of the phytoplankton pigment.  相似文献   

11.
The Arctic Ocean is connected to the Pacific by the Bering Sea and the Bering Strait. During the 4th Chinese National Arctic Research Expedition, measurements of carbon tetrachloride (CCl4) were used to estimate ventilation time-scales and anthropogenic CO2 (Cant) concentrations in the Arctic Ocean and Bering Sea based on the transit time distribution method. The profile distribution showed that there was a high-CCl4 tongue entering through the Canada Basin in the intermediate layer (27.6?<?σθ?<?28), at latitudes between 78 and 85°N, which may be related to the inflow of Atlantic water. Between stations B09 and B10, upwelling appeared to occur near the continental slope in the Bering Sea. The ventilation time scales (mean ages) for deep and bottom water in the Arctic Ocean (~?230–380 years) were shorter than in the Bering Sea (~?430–970 years). Higher mean ages show that ventilation processes are weaker in the intermediate water of the Bering Sea than in the Arctic Ocean. The mean Cant column inventory in the upper 4000 m was higher (60–82 mol m?2) in the Arctic Ocean compared to the Bering Sea (35–48 mol m?2).  相似文献   

12.
Parametrization of turbulent fluxes over inhomogeneous landscapes   总被引:1,自引:0,他引:1  
Reasons for the nonclosure of the heat balance in the atmospheric boundary layers over natural land surfaces are analyzed. Results of measuring the heat-balance components over different land surfaces are used. The Cabauw (Netherlands) data (obtained throughout 1996 over a grass surface with intermittent shrubs and single trees) and the data from the Anchor station in Germany (measured over coniferous forest in 2000–2001) are analyzed. In all, the analysis involves about fifty thousand independent values of the heat-balance components measured in the experiments, which should be indicative of the reliability of the results obtained in the paper. The data have shown that the heat balance is not closed and the imbalance is 50–250 W/m2. The sum of the latent and sensible heat fluxes λE + H = STF is found to be systematically smaller than the difference between the net radiation and the heat flux into the ground R n ? G. It is shown that the main cause of a systematic heat imbalance in the atmospheric boundary layers over inhomogeneous land surfaces is that the methods of surface-flux measurement and estimation are based on the theory that requires the hypothesis of stationarity and horizontal homogeneity. Direct data analysis has shown that the heat imbalance increases with landscape inhomogeneity. In the paper, a parametrization of the heat imbalance is carried out and the coefficient k f (z 0 ef /L ef ) is introduced as a measure of inhomogeneity. For this, data from the experiments FIFE, KUREX, TARTEX, SADE, etc., are also used. Empirical formulas are presented to refine the results of direct measurements and calculations of surface fluxes over natural (inhomogeneous) land surfaces from profile and standard (using bulk parametrizations) data. These formulas can also be used to determine surface fluxes over inhomogeneous underlying land surfaces in order to take into account so-called subgrid-scale effects in constructing prediction models.  相似文献   

13.
New experimental data that make it possible to explain and predict the observed variability of turbulent-energy dissipation in the upper ocean are discussed. For this purpose, the dependence of the energy dissipation rate of breaking wind waves on their propagation velocity (see [1]) is used. The turbulent-energy dissipation values obtained earlier in [2, 3] by a direct method are compared to the results of radar measurements of individual breaking events presented in [1]. On the basis of this comparison, a strong dependence of the turbulent-energy dissipation value on the stage of wind-wave development, which is characterized by the ratio U a /c p (U a is the wind speed and c p is the phase speed of the peak of the wind-wave spectrum) is confirmed. This dependence was found earlier purely empirically. Moreover, it is shown that the theoretically obtained dependence (c p /U a )4, does not contradict the available empirical data. The results of this study opens possibilities for scientifically substantiated calculations of greenhouse-gas exchange (specifically, CO2 exchange between the ocean and the atmosphere).  相似文献   

14.
Microalgae are photosynthetic microorganisms that function as primary producers in aquatic ecosystems. Some species of microalgae undergo rapid growth and cause harmful blooms in marine ecosystems. Heterocapsa triquetra is one of the most common bloom-forming species in estuarine and coastal waters worldwide. Although this species does not produce toxins, unlike some other Heterocapsa species, the high density of its blooms can cause significant ecological damage. We developed a H. triquetra species-specific nuclease protection assay sandwich hybridization (NPA-SH) probe that targets the large subunit of ribosomal RNA (LSU rRNA). We tested probe specificity and sensitivity with five other dinoflagellates that also cause red tides. Our assay detected H. triquetra at a concentration of 1.5×104 cells/mL, more sensitive than required for a red-tide guidance warning by the Korea Ministry of Oceans and Fisheries in 2015 (3.0×104 cells/mL). We also used the NPA-SH assay to monitor H. triquetra in the Tongyeong region of the southern sea area of Korea during 2014. This method could detect H. triquetra cells within 3 h. Our assay is useful for monitoring H. triquetra under field conditions.  相似文献   

15.
In situ Microphytobenthic community dynamics were combined with laboratory measurement of predominant species by fluorescence methods to estimate the areal primary production. Field investigation of community dynamics of microphytobenthos (MPB) was conducted from August 2006 to August 2007 in intertidal flats of the Nakdong River estuary, Korea. MPB Biomass varied between 0.47 and 16.58 μg cm?3 in the surface 1 cm sediment, with two dominant diatom species, Amphora coffeaeformis and Navicula sp., occupying average 77.2 ± 14.9% of total number of MPB cells. The biomass was higher in the slightly muddy sand sites than that in the sand site, and showed different pattern of seasonal variation. The profile of vertical distribution of biomass was an exponential decrease trend with depth in sediments. The biomass proportions in the uppermost 3 mm were 57.6% and 37.8% with and without the presence of biofilm, respectively. The two dominant species were cultured in laboratory, and their photosynthetic parameters, rETRmax (relative maximum electron transport rate), α (light utilization coefficient) and E k (light saturation parameter) were derived from rETR (relative ETR)-irradiance curves by Imaging- PAM (pulse amplitude modulated) fluorometry. The rETR-irradiance curves showed no significant difference of photosynthetic activities between the two species. The areal potential production ranged from 0.74 to 2.22 g C m?2 d?1.  相似文献   

16.
创伤弧菌是一种可感染人类的河口病原菌。建立快速,特异而敏感的检测方法,有助于创伤弧菌感染的早期疾病诊断和及时治疗。本研究设计了针对vvhA基因的一系列引物(包括两对外部引物和两对内部引物),采用环介导等温扩增技术(LAMP)来检测创伤弧菌。结果显示,本方法的最适扩增温度是63℃,反应仅需35分钟。扩增产物不仅可以用含有DNA ladder的琼脂糖凝胶电泳检出,也可借助钙黄绿素直接肉眼观察。采用45株菌株检测该方法的特异性,其中所有创伤弧菌均被检出而其他菌株检测结果皆为阴性。本方法的敏感性是普通PCR扩增的100倍,同时利用该方法可以准确检测出所有的模拟样品、临床标本及环境样品。与其他已知方法比较,针对vvhA基因的介导等温扩增技术可以快速、简单、敏感及特异地鉴定创伤弧菌。  相似文献   

17.
为节约成本和样品,一些学者同时分析海洋沉积物中的碳、氮及其同位素(TOC、TN、δ13C和δ15N)。分析沉积物中的δ13C,需要对样品进行酸化去除无机碳,但是这一酸化过程会使TN和δ15N的分析结果产生偏差,且偏差范围与沉积物中无机碳含量(CaCO3)有关。本研究选取了低CaCO3含量(1-16%)和高CaCO3含量(20-40%)的海洋沉积物样品,比较了酸化过程对TN和δ15N的影响。研究结果表明,酸化过程对海洋沉积物中TN和δ15N的分析结果产生了显著影响。对于低CaCO3含量的样品,酸化导致样品中TN流失了约0-40%,δ15N偏移了约0-2‰;而对于高CaCO3含量的样品,酸化导致样品中TN流失了约10-60%,δ15N偏移了约1-14‰。表明酸化对TN和δ15N的影响已经超过了仪器的误差范围0.002%(TN)和0.08‰(δ15N),将影响TN和δ15N的环境指示意义。因此,即使海洋沉积物样品中CaCO3含量很低,也必须用原样分析TN和δ15N以避免酸化过程的影响。  相似文献   

18.
河口有色溶解有机物(colored dissolved organic matter,CDOM)的分布是各种物理-生物地球化学过程共同作用的结果。为实现河口高动态变化CDOM的监测,遥感是一种重要的手段。由珠江口四个不同季节的航次获得的实测数据,本文构建了一个遥感算法以反演CDOM在400 nm的吸收系数(aCDOM (400))。该算法使用以波段反射率比值Rrs (667)/Rrs (443)和Rrs (748)/Rrs (412)为自变量。将构建的算法应用于2002-2014年的MODIS/Aqua数据,本文计算了珠江口不同季节的aCDOM (400)气候态分布。CDOM的分布主要受珠江径流量和区域水下地形特征的影响。沿着垂直于水深梯度的断面,气候态aCDOM (400)呈指数减少(y=aebx,b<0),但不同季节差异很大。珠江口CDOM主要是河流淡水输运而来。其中,富里酸比例随盐度的增加而降低。基于构建的算法、CDOM保守混合方程和径流量,本文由MODIS/Aqua数据进一步估算了2002-2014年夏季和冬季珠江DOC的有效入海浓度和有效入海通量。珠江的有效入海浓度和有效入海通量都与流量存在正相关关系,且在夏季的相关性更明显,R2分别为0.698和0.9657。  相似文献   

19.
Coral reefs along the Malacca Straits (MS) are poorly developed mainly due to turbidity and sedimentation. This study describes the health status and community structure of the corals in Cape Rachado, West Coast of Peninsular Malaysia (WCPM), utilizing the Coral Video Transect (CVT) technique. All the survey transects were categorized as ‘fair’ coral conditions (27.39 ± 5.41%–48.56 ± 18.96%) with the reef floor mainly covered by corals and sediment. Twelve families of coral comprised of 25 distinct genera were identified. Coral communities were differentiated into four clusters with each being predominated by Galaxea, Diploastrea, Fungia and Pectinia respectively. Among all, Pectinia is the most spectacular genera and dominated the survey area. Along the MS, Favia, Favites and Porites are commonly found while Porites and Pectinia dominated the reefs. Low coral cover and diversity was recorded in MS as compared to the reefs in the South China Sea (SCS). The most prominent results include changes in the dominant coral from Porites to Pectinia while some species such as Acropora were absent from the study area. Based on the presented data, the reef in the study area was predominantly occupied by sediment and the coral communities were formed by a species with a high tolerance to turbidity and sedimentation.  相似文献   

20.
An analysis of spectra of wave disturbances with zonal wave numbers 1 ≤ k ≤ 10 is carried out using winter (November to March) ERA-Interim reanalysis geopotential data in the troposphere and stratosphere for 1979–2016. Contributions of eastward-traveling (E), westward-traveling (W), and stationary (S) waves are estimated. The intensification of wave activity is observed in the tropical troposphere and stratosphere and in the upper stratosphere of the entire Northern Hemisphere. The intensification of wave activity in the tropics and subtropics is noted for waves of all types (E, W, and S), while in the middle and higher latitudes it is related mainly to stationary and eastward waves. Near the subtropical tropopause, the energy of stationary waves has increased in recent decades. In addition, in the tropical and subtropical troposphere and in the subtropical lower stratosphere, the energy of the eastward-traveling waves in El Niño years may be one and a half times or twice the energy in La Niña years. The spectrally weighted zonal wave numbers for waves of all types (E, W, and S) are the largest in the upper subtropical troposphere. The spectrally weighted zonal wave number for W and S waves is correlated with the Atlantic Multidecadal Oscillation index and varies by 15% in 1979–2016 (on an interdecadal time scale). The spectrally weighted wave period is larger in the stratosphere than in the troposphere. It is maximal in the middle extratropical stratosphere. The spectrally weighted wave periods correlate with the activity of sudden stratospheric warmings. The sign of this correlation depends on the latitude, atmospheric layer, and zonal wave number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号