首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在COMCOT海啸数学模型中加入潮汐边界条件,建立了东中国海天文潮与海啸耦合数学模型。在琉球海沟内侧设计震级为7.6级的海底地震,根据地震板块的错动方向不同,设计正波先行与负波先行两种海啸波,通过调整海啸波发生时间,使海啸波波峰遭遇温州湾天文高潮位。将天文潮与海啸耦合模型计算结果与线性叠加计算结果进行比较,结果表明:无论正波先行还是负波先行,天文潮与海啸耦合计算相比线性叠加的结果,海啸波的到达时间均有所提前;而从海啸波波高来看,线性叠加的计算结果则比耦合计算结果偏高。  相似文献   

2.
We perform the numerical analysis of the propagation of tsunamis in the Black Sea from the zones of seismic generation located to the south of the Crimea and in the northwest part of the sea. It is shown that the tsunamis induced by earthquakes in the Crimean seismic zone are entrapped by the nearest part of the shelf and do not result in noticeable oscillations of level in the northwest part of the sea. This enables us to explain the absence of manifestations of tsunamis in 1927, 1939, and 1966 near Odessa. The tsunami waves generated by earthquakes in the northwest part of the sea are characterized by the directivity of their propagation. The wave height is maximum in the areas corresponding to the north and east directions of propagation. Hence, the north coast of the sea and the Kalamit Bay (Crimean Peninsula) are characterized by elevated tsunami hazard for earthquakes occurring in the northwest part of the Black Sea. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 6, pp. 46–53, November–December, 2005.  相似文献   

3.
深圳海域潮汐海啸波耦合数值研究   总被引:3,自引:0,他引:3  
以COMCOT海啸模式和TPXO7.1全球潮汐模式为基础,采用三层嵌套网格,建立了南海海啸与潮汐耦合计算模型,分析深圳海域海啸和潮汐相互作用。潮汐计算结果与实测数据吻合较好,高、低潮位平均误差小于15 cm,20 cm;在潮汐验证的基础上,以马尼拉海沟潜在地震海啸源为案例,进行8.0,9.0级地震海啸与潮汐耦合情景模拟计算,计算结果表明,9级地震海啸在深圳海域外海波高为140~150 cm,如先行波为正波发生在高潮时将产生异常高潮位,负波发生在低潮时将产生异常低潮位,线性叠加计算结果偏大,在25.0 cm之内,到达时间差异小于6 min。  相似文献   

4.
5.
浅水方程被广泛应用于海啸预警报业务及研究,而针对线性浅水方程与非线性浅水方程在不同海区水深地形条件下的适用范围、计算效率问题是海啸研究人员急需了解的。本文应用基于浅水方程的海啸数值预报模型就海啸波在南海、东海传播的线性、非线性特征以及陆架对其传播之影响进行了数值分析研究。海啸波在深水的传播表征为强线性特征,此时线性系统对海啸波幅的模拟计算具有较高的精度和效率,而弱的非线性特征及弱的色散特征对海啸波幅的预报影响甚微,可以忽略不计。海啸波传播至浅水大陆架后受海底坡度变化、海底粗糙度等因素影响,波动的非线性效应迅速传播、积累,与线性浅水方程计算的海啸波相比表现出较大差异,主要表现为:在南海区,水深小于100m时,海啸波首波以后的系列波动非线性特征比较明显,两者波幅差别较大,但首波波幅的区别不大,因此对于该区域在不考虑海啸爬高的情况下,应用线性系统计算得到的海啸波幅也可满足海啸预警报的要求;在东海区由于陆架影响,海啸波非线性特征明显增强,水深小于100m区域,首波及其后系列波波幅均差异较大,故在该区域必须考虑海啸波非线性作用。本文就底摩擦项对海啸波首波波幅的影响进行了数值对比分析,结果表明:底摩擦作用对海啸波首波波幅影响仅作用于小于100m水深。最后,该文通过敏感性试验,初步分析了陆架宽度及陆架边缘深度对海啸波波幅的影响,得出海啸波经陆架传播共振、变形后,海啸波幅的放大或减小与陆架的宽度及陆架边缘水深有关。  相似文献   

6.
根据渤海区域地质断层特征和历史地震活动规律,分析得出渤海内潜在最大震级上限为8.1级,并对该海啸源可能的两组震源机制分别进行了数值模拟。模拟结果显示:渤海局部区域海啸波幅最大可达 1.5 m,最大流速可达2.8~3.0 m/s,具备造成灾害损失的风险。在该海啸源情景下,渤海海盆内易激发长期的水位自由振荡,部分区域水位振荡可持续 20 h以上,振荡波幅的大小与海啸首波波幅相当或更大。基于快速傅里叶变换方法对海啸波进行频谱分析,部分长周期频谱成分满足区域固有共振特征。因此,渤海内一旦发生海啸,不仅要关注海啸首波可能造成的灾害性影响,还要密切关注海啸首波到达后,可能产生的长时间、长周期的海啸波共振以及往复式海啸流造成的影响。  相似文献   

7.
Forecasting of tsunami wave heights at the Russian coast of the Black Sea is discussed. Prognostic numerical calculations of tsunamis were carried out for the tsunami sources uniformly distributed in the Black Sea basin (a total of 55 events). Their results are compared with the results of numerical modeling of the historical events (in 1939 and 1966) and the data of not numerous measurements. A preliminary forecast is made on this basis for the tsunami wave heights along the Russian coast of the Black Sea.  相似文献   

8.
The earthquake that occurred on May 24, 2013, in the basin of the Sea of Okhotsk with a magnitude of 8.3 was the strongest in this region. We have modeled a possible tsunami caused by such an earthquake. The simulations confirm that the wave heights were sufficiently small because the earthquake epicenter depth was 640 km. We analyze the oscillations of the DART buoys in the vicinity of the earthquake source and show that they were not associated with the tsunami waves. Analysis of the available pressure gauge records at different points of the Sea of Okhotsk show that only in one case (Iturup Island) can the observed oscillations of the sea level with a height of approximately 4 cm be classified as tsunami waves.  相似文献   

9.
The paper is concerned with analysis of tsunami wave refraction in the Black Sea, radiated from six seismic areas. Numerical results have been obtained on the basis of a radiation model for long wave propagation, with the sources of tsunamis being pointlike and distributed. Translated by Vladimir A. Puchkin.  相似文献   

10.
The paper analyses the effect of non-linearity and bottom friction on propagation of tsunami-type surface waves from the abyssal part of the Black Sea towards the shelf zone. The study relies, on numerical solution of unidimensional non-linear equations for long waves, using the finite-difference technique. Numerical experiments have been conducted for the bottom profile continental slope and shelf, with the full wave reflection being prescribed at a 10-m depth contour. It has been shown that the major role in transforming solitary waves belongs to non-linear topographic factors rather than to dissipation. The reflected wave has been found to be non-linearly distorted, and wave heights in the Black Sea coastal zone have been found to increase by many times. Translated by Vladimir A. Puchkin.  相似文献   

11.
This paper describes investigations of the internal waves in the Andaman Sea using Moderate Resolution Imaging Spectroradiometer(MODIS) imagery over the period of June 2010 to May 2016. Results of the spatial and temporal distribution, generation sources and propagation characteristics of internal waves are presented. The statistical analysis shows that internal waves can be observed in almost the entire area of the Andaman Sea. Most internal waves are observed in the northern, central and southern regions of the Andaman Sea. A significant number of internal waves between 7°N and 9°N in the East Indian Ocean are also observed. Internal waves can be observed year-round in the Andaman Sea, while most of internal waves are observed between February and April, with a maximum frequency of 15.03% in March. The seasonal distribution of the internal waves shows that the internal waves have mostly been observed in the dry season(February to April), and fewer internal waves are observed in the rainy season(May to October). The double peak distribution for the occurrence frequency of internal waves is found. With respect to the lunar influence, more internal waves are observed after the spring tide, which implies the spring tide may play an important role in internal wave generation in the Andaman Sea. Generation sources of internal waves are explored based on the propagation characteristics of internal waves. The results indicate that six sources are located between the Andaman Islands and the Nicobar Islands, and one is located in the northern Andaman Sea. Four regions with active internal wave phenomenon in the Andaman Sea were presented during the MODIS survey, and the propagation speed of internal waves calculated based on the semidiurnal generation period is smaller than the results acquired from pairs of the images with short time intervals.  相似文献   

12.
Widespread short-period internal wave (SPIW) activity in the White Sea has been revealed for the first time based on long-term (2009–2013) monitoring performed using satellite and in situ observations, and the statistical characteristics of these waves have been obtained. Two main regions where short-period waves constantly exist have been identified: the shelf area near the frontal zone at the boundary between the Basin and the Gorlo Strait and the shallow shelf area where the depths are about 30–50 m near Solovetskie Islands. Intense internal waves (IIWs), which are substantially nonlinear and are related to specific phases of a barotropic tide, are regularly observed near frontal zones. The wave height can reach half the sea depth and the wave periods vary from 7 to 18 min.  相似文献   

13.
The paper analyses the transformation of tsunami-type solitary waves, propagating from the abyssal part of the Black Sea towards its shelf zone. The study is performed by solving numerically unidimensional non-linear equations for non-dispersive long waves, using the finite-difference slope and shelf, with the full wave reflection prescribed at a 10 m depth contour. The non-linearity of the process is shown to throughly impact the reflection of waves by the shore and the shape of the reflected wave. Tsunami wave heights have been seen to increase by several times in the Black sea shelf area. Translated by Vladimir A. Puchkin.  相似文献   

14.
The linear model of long waves is used for the evaluation of the parameters of tsunami waves along the South Coast of Crimea, in the near-Kerch zone, and near the northeast coast of the Black Sea. Our numerical investigations are carried out for 24 probable locations of the elliptic zones of tsunami generation over the continental slope of the basin. The amplitude characteristics of tsunamis are computed for 27 sites of the Black-Sea coast. It is shown that significant strengthening of tsunami waves is possible in the course of their propagation toward the coast. The highest waves are formed at the sites of the coast closest to the seismic source. The dependence of the intensity of tsunami waves along the Black-Sea coast on the location of the seismic source and its magnitude is analyzed.  相似文献   

15.
Analysis of sea-level data obtained from the Atlantic Global Sea Level Observing System (GLOSS) sea-level station at Takoradi, Ghana, West Africa, clearly reveals a tsunami signal associated with the Mw = 9.3 Sumatra earthquake of 26 December 2004 in the Indian Ocean. The tsunami arrived at this location on 27 December 2004 at approximately 01:38 UTC (which is close to the expected tsunami arrival time at that site), after travelling for more than 24 hours. The first wave was negative (trough), in contrast with the South African stations where the first wave was mainly positive (crest). The dominant observed period at Takoradi was about 42 minutes. The maximum trough-to-crest wave height (41cm) was observed on 28 December at 00:15 UTC. There were two distinct tsunami 'bursts', separated in time by about 14 hours, the larger being the second burst. A small residual lowering of the sea level (~15cm) during the tsunami and for several days afterwards, and a delayed (~4.5 days) lowering of seawater temperature (up to ~4.5°C), was observed, possibly indicating the presence of internal waves through the Gulf of Guinea associated with propagating tsunami waves. The prominent tsunami signal found in the Takoradi record suggests that tsunami waves could also be found at other sites off the West African coast.  相似文献   

16.
Solitary waves have been commonly used as an initial condition in the experimental and numerical modelling of tsunamis for decades. However, the main component of a tsunami waves acts at completely different spatial and temporal scales than solitary waves. Thus, use of solitary waves as approximation of a tsunami wave may not yield realistic model results, especially in the coastal region where the shoaling effect restrains the development of the tsunami wave. Alternatively, N-shaped waves may be used to give a more realistic approximation of the tsunami wave profile. Based on the superposition of the sech2(*) waves, the observed tsunami wave profile could be approximated with the N-shaped wave method, and this paper presents numerical simulation results based on the tsunami-like wave generated based on the observed tsunami wave profile measured in the Tohoku tsunami. This tsunami-like wave was numerically generated with an internal wave source method based on the two-phase incompressible flow model with a Volume of Fluid (VOF) method to capture the free surface, and a finite volume scheme was used to solve all the governing equations. The model is first validated for the case of a solitary wave propagating within a straight channel, by comparing its analytical solutions to model results. Further, model comparisons between the solitary and tsunami-like wave are then made for (a) the simulation of wave run-up on shore and (b) wave transport over breakwater. Comparisons show that use of these largely different waveform shapes as inputs produces significant differences in overall wave evolution, hydrodynamic load characteristics as well as velocity and vortex fields. Further, it was found that the solitary wave uses underestimated the total energy and hence underestimated the run-up distance.  相似文献   

17.
Based on the third-generation oceanic wave prediction model (WAVEWATCH Ⅲ) ,the third-generation nearshore wave calculation model (SWAN) and the mathematical tide, tidal current and cyclone current model, which have been improved, interconnected and expanded, a coupled model of offshore wave, tide and sea current under tropical cyclone surges in the South China Sea has been established. The coupled model is driven by the tropical cyclone field containing the background wind field. In order to test the hindcasting effect of the mathematical model, a comparison has been made between the calculated results and the observational results of waves of 15 cyclone cases, water levels and current velocities of the of 7 cyclones. The results of verification indicate that the calculated and observed results are basically identical.  相似文献   

18.
This paper focuses on the numerical modelling of tsunami propagation in the open Black Sea. Two types of numerical models are discussed: a model for the radial propagation of long waves and an evolutionary finite-difference prognostic model. Experimentally derived numerical data on the model source of tsunamis are reported. Translated by Vladimir A. Puchkin.  相似文献   

19.
At 13:46 on March 11, 2011(Beijing time), an earthquake of Mw=9.0 occurred in Japan. By comparing the tsunami data from Guanhekou marine station with other tsunami wave observation gathered from southeast coastal area of China, it was evident that, only in Guanhekou, the position of the maximum wave height appeared in the middle part rather than in the front of the tsunami wave train. A numerical model of tsunami propagation based on 2-D nonlinear shallow water equations was built to study the impact range and main causes of the special tsunami waveform discovered in Jiangsu coastal area. The results showed that nearly three-quarters of the Jiangsu coastal area, mainly comprised the part north of the radial sand ridges, reached its maximum tsunami wave height in the middle part of the wave train. The main cause of the special waveform was the special underwater topography condition of the Yellow Sea and the East China Sea area, which influenced the tsunami propagation and waveform significantly. Although land boundary reflection brought an effect on the position of the maximum wave height to a certain extent, as the limits of the incident waveform and distances between the observation points and shore, it was not the dominant influence factor of the special waveform. Coriolis force's impact on the tsunami waves was so weak that it was not the main cause for the special phenomenon in Jiangsu coastal area. The study reminds us that the most destructive wave might not appear in the first one in tsunami wave train.  相似文献   

20.
Scenarios of local tsunamis in the China Seas by Boussinesq model   总被引:1,自引:0,他引:1  
The Okinawa Trench in the East China Sea and the Manila Trench in the South China Sea are considered to be the regions with high risk of potential tsunamis induced by submarine earthquakes. Tsunami waves will impact the southeast coast of China if tsunamis occur in these areas. In this paper, the horizontal two-dimensional Boussinesq model is used to simulate tsunami generation, propagation, and runnp in a domain with complex geometrical boundaries. The temporary varying bottom boundary condition is adopted to describe the initial tsunami waves motivated by the submarine faults. The Indian Ocean tsunami is simulated by the numerical model as a validation case. The time series of water elevation and runup on the beach are compared with the measured data from field survey. The agreements indicate that the Boussinesq model can be used to simulate tsunamis and predict the waveform and runup. Then, the hypothetical tsunamis in the Okinawa Trench and the Manila Trench are simulated by the numerical model. The arrival time and maximum wave height near coastal cities are predicted by the model. It turns out that the leading depression N-wave occurs when the tsunami propagates in the continental shelf from the Okinawa Trench. The scenarios of the tsunami in the Manila Trench demonstrate significant effects on the coastal area around the South China Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号