首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Collision at sea is always a significant issue affecting the safety of ship navigation. The shipborne autonomous collision avoidance system (SACAS) has the great advantage to minimize collision accidents in ship navigation. A parallel trajectory planning architecture is proposed in this paper for SACAS system. The fully-coupled deliberative planner based on the modified RRT algorithm is developed to search for optimal global trajectory in a low re-planning frequency. The fully-coupled reactive planner based on the modified DW algorithm is developed to generate the optimal local trajectory in a high re-planning frequency to counteract the unexpected behavior of dynamic obstacles in the vicinity of the vessel. The obstacle constraints, ship maneuvering constraints, COLREGs rules, trajectory optimality, and real-time requirements are satisfied simultaneously in both global and local planning to ensure the collision-free optimal navigation in compliance with COLREGs rules. The on-water tests of a trimaran model equipped with a model-scale SACAS system are presented to demonstrate the effectiveness and efficiency of the proposed algorithm. The good balance between the computational efficiency and trajectory optimality is achieved in parallel trajectory planning.  相似文献   

2.
随着全球经济的快速发展,海上运输由于其运力大、运费低而变得更具实用性。然而,这也意味着在海上航道行驶的船只正变得越来越多,这将导致在复杂的海洋环境中航海船只发生事故的可能性会很高。据相关历史的统计,在海域中航行缺乏高精度导航数据会导致大量事故,这种累积的事故信息可以被用来提高航海的安全性。本文通过将蕴含在AIS (Automatic Identification System) 大数据中的经验导航信息挖掘出来,以辅助实现复杂海事环境下安全可靠的船舶路径的生成。本文提出了一种基于大数据自动生成船舶路径的新方法。该方法首先在大量船舶轨迹上通过DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 聚类形成不同的轨迹矢量簇。然后,迭代计算轨迹矢量簇的中心线,并从这些中心线之间的节点-弧段拓扑关系来构建航道网络。最后,基于航道网络来实现船舶路径的生成,对于航道网络未覆盖的海域,则通过海洋环境风险栅格的路径规划来实现船舶路径的生成。不同海域不同AIS数据集进行的多次实验结果表明,本文提出的船舶路径生成方法是有效性。  相似文献   

3.
Owing to high costs and unnecessary inspections necessitated by the traditional inspection planning for ship structures, the risk-based inspection and repair planning should be investigated for the most cost-effective inspection. This paper aims to propose a cost-benefit assessment model of risk-based inspection and repair planning for ship structures subjected to corrosion deterioration. Then, the benefit-cost ratio is taken to be an index for the selection of the optimal inspection and repair strategy. The planning problem is formulated as an optimization problem where the benefit-cost ratio for the expected lifetime is maximized with a constraint on the minimum acceptalbe reliability index. To account for the effect of corrosion model uncertainty on the cost-benefit assessment, two corrosion models, namgly, Paik' s model and Guedes Soares' model, are adopted for analysis. A numerical example is presented to illustrate the proposed method. Sensitivity studies are also providet. The results indicate that the proposed method of risk-based cost-benefit analysis can effectively integrate the economy with reliability of the inspection and repair planning. A balance can be achieved between the risk cost and total expected inspection and repair costs with the proposed method, which is very. effective in selecting the optimal inspection and repair strategy. It is pointed out that the corrosion model uncertainty and parametric uncertaintg have a significant impact on the cost-benefit assessment of inspection and repair planning.  相似文献   

4.
建立了基于风险的船体结构腐蚀优化检测规划的成本-效益分析模型。以费效比作为选择最优检测策略的标准,最优的检测策略是在保证结构设计工作寿命期内的可靠指标大于最低可靠指标的基础上,使得结构生命周期内总的费效比最大。在此基础上,以受点腐蚀损伤的船体构件为例,对其检测策略进行了成本-效益评估,并对计算结果进行了敏感性分析。结果表明,基于风险的成本及效益分析方法可以将检测规划的经济性和可靠性有效地结合起来,能够在风险与成本之间达到一种平衡,它在优化检测策略时是有效的。  相似文献   

5.
A framework of risk based inspection and repair planning was presented to optimize for the ship structures subjected to corrosion deterioration. The planning problem was formulated as an optimization problem where the expected lifetime costs were minimized with a eonstraint on the minimum aceeptable rehability index. The safety margins were established for the inspection events, the repair events and the failure events for ship struetures. Moreover, the formulae were derived to calculate failure probabihties and repair probabilities. Based on them, a component subjected to corrosion is investigated for illustration of the process of selecting the optimal inspection and repair strategy. Furthermore, some sensitivity studies were provided. The results show that the optimal inspection instants should take place before the reliability index reaches the minimum acceptable reliability index. The optimal target failure probability is 10^-3. In addition, a balance can be achieved between the risk cost and total expected inspection and repair costs by means of the risk-based optimal inspection and repair method, which is very effective in selecting the optimal inspection and repair strategy.  相似文献   

6.
张玲  刘旭  姜義  纪永刚 《海洋科学》2016,40(6):133-138
本文对现有的高频地波雷达目标跟踪方法进行了概述,提出了一种地波雷达目标长时连续跟踪的方法,基本思想是:充分挖掘航迹弧段特征,基于特征对船只运动建模,并结合杂波背景进行融合决策。进一步,为了达到长时间连续跟踪的需求,借鉴深度学习的思想,利用新获取的弧段数据对算法估计结果不断递归校正,使得随着获取数据的增加跟踪越准确。该方法适用于杂波环境且在航道附近存在众多干扰船只的情况下对机动目标航迹的实时稳定跟踪,为高频地波雷达在复杂干扰环境下特定目标持续跟踪提供理论基础和方法指导,为充分发挥地波雷达在海上监视监测中的作用提供技术支撑。  相似文献   

7.
The maximum extent of ship spraying for a medium-sized fishing trawler (MFV) of Soviet type has been considered. A simple geometrical model for generating the spray due to ship-wave collisions has been applied to determine the maximum height of the spray source above the ship deck. The maximum height of the spray source has been assumed to depend on the ship speed relative to the moving waves and an empirical constant specific to a given type of ship. A unique field data set (Kuzniecov et al., 1971) of the height of the upper limit of ice accretion on the foremast of an MFV has been used to determine the value of the empirical constant for this vessel. For documented air-sea and ship motion parameters, the trajectories of droplets hitting the upper parts of the accretion on the foremast have been calculated using the equation of droplet motion for each reported icing event.The heights of the spray source computed by the trajectory method for each case of icing were compared with the heights of the spray source determined by a correlation involving the ship speed relative to the waves and the vertical extent of spray. The best fit was obtained for an empirical constant value of 0.535.The model performance was tested using an independent data set (Sharapov, 1971) on the spraying zone of an MFV. The tests showed that this model predicts the extent of the spraying zone over the ship with satisfactory accuracy and suggest that it should be incorporated into an integrated ship icing model.Finally, the model was run for several ship speeds, headings and wind speeds to examine the effect of these parameters on the maximum height of the spray hitting the ship's foremast. It was found that this height increases with wind speed and ship speed and is maximum for ship headings of 120–130°.  相似文献   

8.
为了保障救援船舶在恶劣海况环境下能够安全、高效地到达救援区域,本文改进人工鱼群算法开展海上救援路径规划研究。选取地形、海风和海浪等指标进行风险度量,采用GIS(geographical information system)多指标决策方法构建海洋环境威胁场,通过粒子群算法计算救援路径规划的最佳参数,并实现海上救援路径搜索。实验表明,基于改进的人工鱼群算法规划的船舶救援路径效果更优,可为海上应急救援提供辅助决策参考。  相似文献   

9.
The problem of simulating the ship manoeuvring motion is studied mainly in connection with manoeuvring simulators. Several possible levels of solution to the problem with different degrees of complexity and accuracy are discussed. It is shown that the structure of the generic manoeuvring mathematical model leads naturally to two basic approaches based respectively on dynamic and purely kinematic prediction models. A simplified but fast dynamic manoeuvring model is proposed as well as two new advances in kinematic prediction methods: a prediction based on current values of velocities and accelerations and a method of anticipating the ship's trajectory in a course changing manoeuvre.  相似文献   

10.
Bottom ventilated cavitation has been proven as a very effective drag reduction technology for river ships and planning boats. The ability of this technology to withstand the sea wave impact usual for seagoing ships depends on the ship bottom shape and could be enhanced by some active flow control devices. Therefore, there is the need in numerical tools to estimate the effects of bottom changes and to design such devices. The fundamentals of active flow control for the ship bottom ventilated cavitation are considered here on the basis of a special model of cavitating flows. This model takes into account the air compressibility in the cavity, as well as the multi-frequency nature of the incoming flow in wavy seas and of the cavity response on perturbations by incoming flow. The numerical method corresponding to this model was developed and widely manifested with an example of a ship model tested in a towing tank at Froude numbers between 0.4 and 0.7.The impact of waves in head seas and following seas on cavities has been studied in the range of wavelengths from 0.45 to 1.2 of the model (or ship) length. An oscillating cavitator-spoiler was considered as the flow controlling devices in this study. The oscillation magnitude and the phase shift between cavitator oscillation and the incoming waves have been varied to determine the best flow control parameters. The main results of the provided computational analysis include oscillations of cavity surface, of the pressure in cavity and of the moment of hydrodynamic load on the cavitator. The major part of computations has been carried out for the flap oscillating at the frequency coinciding with the wave frequency, but the effect of a frequency shift is also analyzed.  相似文献   

11.
Min-Guk Seo  Yonghwan Kim 《Ocean Engineering》2011,38(17-18):1934-1945
This paper considers a numerical analysis of ship maneuvering performance in the presence of incident waves and resultant ship motion responses. To this end, a time-domain ship motion program is developed to solve the wave–body interaction problem with the ship slip speed and rotation, and it is coupled with a modular-type 4-DOF maneuvering problem. In this coupled problem, the second-order mean drift force, which can play an important role in the ship maneuvering trajectory, is estimated by using a direct pressure integration method. The developed method is validated by observing the second-order mean drift force, and planar trajectories in maneuvering tests with and without the presence of incident waves. The comparisons are made for two ship models, Series 60 with block coefficient 0.7 and the S-175 containership, with existing experimental data. The maneuvering tests observed in this study include a zig-zag test in calm water, and turning tests in calm water and in regular waves. The present results show a fair agreement of overall tendency in maneuvering trajectories.  相似文献   

12.
When a fast container ship or a naval vessel turns, accompanying roll motions occur. This roll effect must be considered in the horizontal equations of the motion of the ship to predict the maneuverability of the ship properly. In this paper, a new method for determining a model structure of the hydrodynamic roll moment acting on a ship and for estimating the hydrodynamic coefficients is proposed. The method utilizes a system identification technique with the data from sea trial tests or from free running model (FRM) tests. To obtain motion data that is applied to the proposed algorithm, an FRM of a large container ship was developed. Using this model ship, standard maneuvering tests were carried out on a small body of water out of doors. A hydrodynamic roll moment model was constructed utilizing the data from turning circle tests and a 20-20 zig-zag test. This was then confirmed through a 10-10 zig-zag test. It was concluded that a model structure of the hydrodynamic roll moment model could be established without difficulty through a system identification method and FRM tests.  相似文献   

13.
在Fudide-Krylov假设条件下,依据船舶分离建模理论在固定和运动坐标系中计算海面船只六自由度运动数学模型。主要包括:对风、浪、流的单独建模并进行矢量叠加,并在风浪流联合作用下对船舶六自由度运动构建简化的数学建模,完成实时仿真。基于Simulink和V-Realm Builder虚拟现实技术创建船舶运动模型、海洋表面环境及船只的几何模型,对船舶六自由度运动进行视景仿真,给出了有风无浪、有浪无风和风浪兼有三种情况下船只旋回路径和船舶运动轨迹。在VR视景浏览器中创建动态海面上船舶六自由度运动模型,不仅易于实现且结果逼真。得到的结果为进一步研究动态船只目标声散射特性的精确预报提供基础。  相似文献   

14.
In this paper, we present a mathematical model including seakeeping and maneuvering characteristics to analyze the roll reduction for a ship traveling with the stabilizer fin in random waves. The self-tuning PID controller based on the neural network theory is applied to adjust optimal stabilizer fin angles to reduce the ship roll motion in waves. Two multilayer neural networks, including the system identification neural network (NN1) and the parameter self-tuning neural network (NN2), are adopted in the study. The present control technique can save the time for searching the optimal PID gains in any sea states. The simulation results show that the present developed self-tuning PID control scheme based on the neural network theory is indeed quite practical and sufficient for the ship roll reduction in the realistic sea.  相似文献   

15.
Mark A. Grosenbaugh   《Ocean Engineering》2007,34(11-12):1532-1542
The dynamic behavior of a towed cable system that results from the tow ship changing course from a straight-tow trajectory to one involving steady circular turning at a constant radius is examined. For large-radius ship turns, the vehicle trajectory and vehicle depth assumed, monotonically and exponentially, the large-radius steady-state turning solution of Chapman [Chapman, D.A., 1984. The towed cable behavior during ship turning manoeuvers. Ocean Engineering 11, 327–361]. For small-radius ship turns, the vehicle trajectory initially followed a corkscrew pattern with the vehicle depth oscillating about and eventually decaying to the steady-state turning solution of Chapman (1984). The change between monotonic and oscillatory behavior in the time history of the vehicle depth was well defined and offered an alternate measure to Chapman's (1984) critical radius for the transition point between large-radius and small-radius behavior. For steady circular turning in the presence of current, there was no longer a steady-state turning solution. Instead, the vehicle depth oscillated with amplitude that was a function of the ship-turning radius and the ship speed. The dynamics of a single 360° turn and a 180° U-turn are discussed in terms of the transients of the steady turning maneuver. For a single 360° large-radius ship turn, the behavior was marked by the vehicle dropping to the steady-state turning depth predicted by Chapman (1984) and then rising back to the initial, straight-tow equilibrium depth once the turn was completed. For small ship-turning radius, the vehicle dropped to a depth corresponding to the first trough of the oscillatory time series of the steady turning maneuver before returning to the straight-tow equilibrium depth once the turn was completed. For some ship-turning radii, this resulted in a maximum vehicle depth that was greater than the steady-state turning depth. For a 180° turn and ship-turning radius less than the length of the tow cable, the vehicle never reached the steady-state turning depth.  相似文献   

16.
When using self-propelled ship models, it is necessary to observe and record a trajectory of actual movement and also to determine a current value of velocity and acceleration. An optoelectronic system for determining and recording the trajectory of the model has been developed. It operates over an 150 m×150 m area with a fundamental error of less than 0.1 m and consists of an optical transmitter aboard the model and two stations ashore connected to a computer placed in a remote operational room. The directional angles are measured by two receiving telescopes (one for each station ashore), which are rotating with an angular velocity ~15 rad/s. The coordinates of the model are obtained by simple arithmetic. Errors of measurements and the maximum range of operation are also discussed  相似文献   

17.
It is difficult to compute far-field waves in a relative large area by using one wave generation model when a large calculation domain is needed because of large dimensions of the waterway and long distance of the required computing points. Variation of waterway bathymetry and nonlinearity in the far field cannot be included in a ship fixed process either. A coupled method combining a wave generation model and wave propagation model is then used in this paper to simulate the wash waves generated by the passing ship. A NURBS-based higher order panel method is adopted as the stationary wave generation model; a wave spectrum method and Boussinesq-type equation wave model are used as the wave propagation model for the constant water depth condition and variable water depth condition, respectively. The waves calculated by the NURBS-based higher order panel method in the near field are used as the input for the wave spectrum method and the Boussinesq-type equation wave model to obtain the far-field waves. With this approach it is possible to simulate the ship wash waves including the effects of water depth and waterway bathymetry. Parts of the calculated results are validated experimentally, and the agreement is demonstrated. The effects of ship wash waves on the moored ship are discussed by using a diffraction theory method. The results indicate that the prediction of the ship induced waves by coupling models is feasible.  相似文献   

18.
摘要:在海况环境下,进行船舶运动预测时。由于惯性传感器采集系统本身的电学特性,会产生偏移误差,严重影响一般预测方法的准确性。针对这一问题,在常规LSTM神经网络的基础上,设计改良了一种二元的LSTM网络架构。在船舶运动仿真平台上进行模拟船舶升沉运动实验,并通过惯性传感系统测量仿真平台实时积分位移进行计算验证。验证统计该网络预测结果峰差值均方差0.64%,均值均方差0.42%,峰值均方差0.57%,证实该网络较常规LSTM在船舶运动预测领域具有更好的针对性和适应性,更准确的还原预测实际的船舶运动轨迹。  相似文献   

19.
This study proposes a ship weather-routing algorithm based on the composite influence of multi-dynamic elements for determining the optimized ship routes. The three-dimensional modified isochrone (3DMI) method utilizing the recursive forward technique and floating grid system for the ship tracks is adopted. The great circle sailing (GCR) is considered as the reference route in the earth coordinate system. Illustrative optimized ship routes on the North Pacific Ocean have been determined and presented based on the realistic constraints, such as the presence of land boundaries, non-navigable sea, seaway influences, roll response as well as ship speed loss. The proposed calculation method is effective for optimizing results by adjusting the weighting factors in the objective functions. The merits of the proposed method can be summarized as: (1) the navigability of the route can be analyzed dynamically to acquire the optimal route; (2) adopting multi-dynamic elements as weighting factors has the benefits in energy efficiency, time-saving and minimum voyage distance; and (3) an ability to enhance speed performance and to incorporate safety concern in a dynamic environment.  相似文献   

20.
基于二元LSTM神经网络的船舶运动预测算法研究   总被引:1,自引:1,他引:0  
在海况环境下,进行船舶运动预测时。由于惯性传感器采集系统本身的电学特性,会产生误差偏移,影响预测的准确性。针对这一问题,在常规长短期记忆网络(LSTM)的基础上,设计改良了一种二元的LSTM网络架构。在船舶运动仿真平台上进行模拟船舶升沉运动实验,并通过惯性传感系统测量仿真平台实时积分位移进行计算验证。验证统计该网络预测结果峰差值均方差0.64%,均值均方差0.42%,峰值均方差0.57%,证实该网络较常规LSTM在船舶运动预测领域具有更好的针对性和适应性,更准确的对船舶运动进行预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号